Veículos autônomos são importantes para a execução de missões dos mais variados tipos, reduzindo riscos aos seres humanos e executando as missões de uma maneira mais eficiente. Neste contexto existem os veículos aéreos não tripulados que são cada vez mais utilizados em missões de vigilância, reconhecimento, resgate, entre outras. Uma das características destes veículos é realizar as missões de maneira autônoma, sem a intervenção de operadores humanos. Desta forma, é necessário que existam formas de detectar aproximações perigosas com outras aeronaves e objetos que possam causar risco de colisão e, consequentemente a perda de ativos de alto valor ou até mesmo vidas humanas e, posteriormente realizar o desvio necessário. Neste cenário foi proposto o MOSAIC, um sistema de detecção e desvio de obstáculos utilizando visão monocular para veículos aéreos de pequeno porte. Para isto, foi desenvolvido um método de estimativa da posição tridimensional dos obstáculos a partir de imagens monoculares e propostas melhorias em algoritmos de detecção. A validação do sistema foi obtida por meio de experimentos simulados e reais sobre cada módulo e os resultados obtidos foram promissores, apresentando um erro de apenas 9,75% em ambientes sem restrições e distâncias de até 20 metros. Com isto, os resultados se mostram melhores que os demais algoritmos encontrados no estado da arte em que o erro é menor que 10% apenas em ambientes controlados e distâncias de até 5 metros. / Autonomous vehicles can be used for different kinds of missions reducing risks to human life and being more efficient. In this context, unmanned aerial vehicles play an important role on surveillance, recognition and rescue missions, among others. Due to the mission nature, these vehicles need to perform actions without human intervention, which requires that dangerous approximations to others aerial vehicles or objects to be detected and properly avoided. This leads to the creation of MOSAIC, an obstacle avoidance system based on monocular vision designed to meet the requirements of miniature air vehicles. A novel approach to estimate obstacle three-dimensional position based on monocular vision was developed and some improvements in the detection algorithm were proposed. The system validation was obtained through simulated and real experiments in which each module could be validated. Promising results were obtained showing an error under 9.75% in unconstrained environments and distance up to 20 meters. This results were better than the algorithms and approaches described in the state of the art where errors are under 10% only on constrained environments and distance up to 5 meters.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25032019-100534 |
Date | 21 November 2018 |
Creators | Rodolfo Barros Chiaramonte |
Contributors | Kalinka Regina Lucas Jaquie Castelo Branco, Fernando Santos Osório, Edward David Moreno Ordoñez, Alex Sandro Roschildt Pinto, Varese Salvador Timóteo, Jo Ueyama |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds