Throughput processors such as GPUs continue to provide higher peak arithmetic capability. Designing a high throughput memory system to keep the computational units busy is very challenging. Future throughput processors must continue to exploit data locality and utilize the on-chip and off-chip resources in the memory system more effectively to further improve the memory system throughput. This dissertation advocates orchestrating the thread scheduler with the cache management algorithms to alleviate GPU cache thrashing and pollution, avoid bandwidth saturation and maximize GPU memory system throughput. Based on this principle, this thesis work proposes three mechanisms to improve the cache efficiency and the memory throughput. This thesis work enhances the thread throttling mechanism with the Priority-based Cache Allocation mechanism (PCAL). By estimating the cache miss ratio with a variable number of cache-feeding threads and monitoring the usage of key memory system resources, PCAL determines the number of threads to share the cache and the minimum number of threads bypassing the cache that saturate memory system resources. This approach reduces the cache thrashing problem and effectively employs chip resources that would otherwise go unused by a pure thread throttling approach. We observe 67% improvement over the original as-is benchmarks and a 18% improvement over a better-tuned warp-throttling baseline. This work proposes the AgeLRU and Dynamic-AgeLRU mechanisms to address the inter-thread cache thrashing problem. AgeLRU prioritizes cache blocks based on the scheduling priority of their fetching warp at replacement. Dynamic-AgeLRU selects the AgeLRU algorithm and the LRU algorithm adaptively to avoid degrading the performance of non-thrashing applications. There are three variants of the AgeLRU algorithm: (1) replacement-only, (2) bypassing, and (3) bypassing with traffic optimization. Compared to the LRU algorithm, the above mentioned three variants of the AgeLRU algorithm enable increases in performance of 4%, 8% and 28% respectively across a set of cache-sensitive benchmarks. This thesis work develops the Reuse-Prediction-based cache Replacement scheme (RPR) for the GPU L1 data cache to address the intra-thread cache pollution problem. By combining the GPU thread scheduling priority together with the fetching Program Counter (PC) to generate a signature as the index of the prediction table, RPR identifies and prioritizes the near-reuse blocks and high-reuse blocks to maximize the cache efficiency. Compared to the AgeLRU algorithm, the experimental results show that the RPR algorithm results in a throughput improvement of 5% on average for regular applications, and a speedup of 3.2% on average across a set of cache-sensitive benchmarks. The techniques proposed in this dissertation are able to alleviate the cache thrashing, cache pollution and resource saturation problems effectively. We believe when these techniques are combined, they will synergistically further improve GPU cache efficiency and the overall memory system throughput. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/25098 |
Date | 10 July 2014 |
Creators | Li, Dong, active 21st century |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0015 seconds