Return to search

Sélection contextuelle de services continus pour la robotique ambiante / Contextual selection of continuous services applied to ambient robotics

La robotique ambiante s'intéresse à l'introduction de robots mobiles au sein d'environnements actifs où ces derniers fournissent des fonctionnalités alternatives ou complémentaires à celles embarquées par les robots mobiles. Cette thèse étudie la mise en concurrence des fonctionnalités internes et externes aux robots, qu'elle pose comme un problème de sélection de services logiciels. La sélection de services consiste à choisir un service ou une combinaison de services parmi un ensemble de candidats capables de réaliser une tâche requise. Pour cela, elle doit prédire et évaluer la performance des candidats. Ces performances reposent sur des critères non-fonctionnels comme la durée d'exécution, le coût ou le bruit. Ce domaine applicatif a pour particularité de nécessiter une coordination étroite entre certaines de ses fonctionnalités. Cette coordination se traduit par l'échange de flots de données entre les fonctionnalités durant leurs exécutions. Les fonctionnalités productrices de ces flots sont modélisées comme des services continus. Cette nouvelle catégorie de services logiciels impose que les compositions de services soient hiérarchiques et introduit des contraintes supplémentaires pour la sélection de services. Cette thèse met en évidence la présence d'un important couplage non-fonctionnel entre les performances des instances de services de différents niveaux, même lorsque les flots de données sont unidirectionnels. L'approche proposée se concentre sur la prédiction de la performance d'une instance de haut-niveau sachant son organigramme à l'issue de la sélection. Un organigramme regroupe l'ensemble des instances de services sollicitées pour réaliser une tâche de haut-niveau. L'étude s'appuie sur un scénario impliquant la sélection d'un service de positionnement en vue de permettre le déplacement d'un robot vers une destination requise. Pour un organigramme considéré, la prédiction de performance d'une instance de haut-niveau de ce scénario introduit les exigences suivantes : elle doit (i)être contextuelle en tenant compte, par exemple, du chemin suivi pour atteindre la destination requise, (ii) prendre en charge le remplacement d'une instance de sous-service suite à un échec ou, par extension, de façon opportuniste. En conséquence, cette sélection de services est posée comme un problème de prise de décision séquentielle formalisé à l'aide de processus de décision markoviens à horizon fini. La dimensionnalité importante du contexte en comparaison à la fréquence des déplacements du robot rend inadaptées les méthodes consistant à apprendre directement une fonction de valeur ou une fonction de transition. L'approche proposée repose sur des modèles de dynamique locaux et exploite le chemin de déplacement calculé par un sous-service pour estimer en ligne les valeurs des organigrammes disponibles dans l'état courant. Cette estimation est effectuée par l'intermédiaire d'une méthode de fouille stochastique d'arbre, Upper Confidence bounds applied to Trees / Ambient robotics aims at introducing mobile robots in active environments where the latter provide new or alternative functionalities to those shipped by mobile robots. This thesis studies the competition between robot and external functionalities, which is set as a service selection problem. Service selection consists in choosing a service or a combination of services among a set of candidates able to fulfil a given request. To do this, it has to predict and evaluate candidate performances. These performances are based on non-functional requirements such as execution time, cost or noise. This application domain requires tight coordination between some of its functionalities. Tight coordination involves setting data streams between functionalities during their execution. In this proposal, functionalities producing data streams are modelled as continuous services. This new service category requires hierarchical service composition and adds some constraints to the service selection problem. This thesis shows that an important non-functional coupling appears between service instances at different levels, even when data streams are unidirectional. The proposed approach focuses on performance prediction of an high-level service instance given its organigram. This organigram gathers service instances involved in the high-level task processing. The scenario included in this study is the selection of a positioning service involved in a robot navigation high-level service. For a given organigram, performance prediction of an high-level service instance of this scenario has to: (i) be contextual by, for instance, considering moving path towards the required destination, (ii) support service instance replacement after a failure or in an opportunist manner. Consequently, this service selection is set as a sequential decision problem and is formalized as a finite-horizon Markov decision process. Its high contextual dimensionality with respect to robot moving frequency makes direct learning of Q-value functions or transition functions inadequate. The proposed approachre lies on local dynamic models and uses the planned moving path to estimate Q-values of organigrams available in the initial state. This estimation is done using a Monte-Carlo tree search method, Upper Confidence bounds applied to Trees

Identiferoai:union.ndltd.org:theses.fr/2013PEST1079
Date18 November 2013
CreatorsCogrel, Benjamin
ContributorsParis Est, Amirat, Yacine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds