Return to search

Enhanced positioning in harsh environments / Förbättrad positionering i svåra miljöer

Today’s heavy duty vehicles are equipped with safety and comfort systems, e.g. ABS and ESP, which totally or partly take over the vehicle in certain risk situations. When these systems become more and more autonomous more robust positioning is needed. In the right conditions the GPS system provides precise and robust positioning. However, in harsh environments, e.g. dense urban areas and in dense forests, the GPS signals may be affected by multipaths, which means that the signals are reflected on their way from the satellites to the receiver. This can cause large errors in the positioning and thus can give rise to devastating effects for autonomous systems. This thesis evaluate different methods to enhance a low cost GPS in harsh environments, with focus on mitigating multipaths. Mainly there are four different methods: Regular Unscented Kalman filter, probabilistic multipath mitigation, Unscented Kalman filter with vehicle sensor input and probabilistic multipath mitigation with vehicle sensor input. The algorithms will be tested and validated on real data from both dense forest areas and dense urban areas. The results show that the positioning is enhanced, in particular when integrating the vehicle sensors, compared to a low cost GPS.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-94523
Date January 2013
CreatorsGlans, Fredrik
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds