Return to search

Groundwater and its response to climate variability and change in cold snow dominated regions in Finland: methods and estimations

Abstract

A conceptual framework was developed to assess how changes in temperature and precipitation affect sub-surface hydrology, groundwater recharge, groundwater quantity and quality. A conceptual and statistical approach was developed to predict groundwater level variations. Daily rainfall, snowmelt and evapotranspiration values were generated with a novel conceptual hydrological model developed in this study. These values were cross-correlated with observed groundwater levels to find representative time lags and significant correlations. A statistical model linking rainfall, snowmelt, evapotranspiration and groundwater level was then developed and validated. The model simulated seasonal variations in groundwater level very accurately. A sequential approach was developed to assess surface water-groundwater interactions. The simulated surface water level estimated with the WSFS model and recharge estimated with CoupModel were linked to the groundwater flow model MODFLOW. Groundwater, surface water and snow samples were collected to study the chemical composition of groundwater in an unconfined esker aquifer in Northern Finland. Concentrations of Ca2+, Cl-, NO3-N and SiO2 and electrical conductivity were determined. Water quality in the main aquifer was found to be similar to that in the perched groundwater. Solute concentrations generally decreased during and immediately after snowmelt periods, indicating the importance of snowmelt input for groundwater quality. In the perched groundwater, NO3-N concentration increased with elevated groundwater level, indicating a nitrogen source on the land surface. The Cl- concentration in groundwater decreased when the surface water level rose higher than groundwater level. According to simulation results for the A1B climate change scenario, groundwater recharge is projected to increase in winter months due to increased snowmelt and decreased soil frost depth. The spring snowmelt peak in late spring will decrease. This will reduce aquifer storage in early spring, increasing the vulnerability to summer droughts. It is projected that flow regimes between unconfined aquifers and surface water may change, affecting water quantity and possibly quality in groundwater systems. / Tiivistelmä

Tässä työssä kehitettiin konseptuaalinen viitekehysmalli, jolla voidaan arvioida kuinka muutokset lämpötilassa ja sadannassa vaikuttavat hydrologiaan, pohjaveden muodostumiseen, pohjaveden määrään ja laatuun. Tässä työssä kehitettiin ja yhdistettiin konseptuaalinen ja tilastomatemaattinen regressiomalli, jolla voidaan simuloida pohjaveden pinnankorkeuden muutoksia. Konseptuaalisella mallilla laskettiin päivittäinen sadanta, lumen sulanta ja haihdunta. Havaitut pohjaveden pinnankorkeudet korreloitiin sadannan, lumen sulannan ja haihdunnan kanssa, jotta löydettiin merkitsevät korrelaatiot tyypillisillä viiveillä. Lopuksi tilastollinen regressiomalli, joka yhdistää sadannan, lumen sulannan, haihdunnan ja pohjaveden pinnankorkeuden, kalibroitiin ja validoitiin. Kehitetyllä mallilla onnistuttiin simuloimaan vuodenaikainen pohjaveden pinnankorkeus. Yhdensuuntainen mallinnusmenetelmä kehitettiin arvioimaan pinta- ja pohjaveden vuorovaikutusta. Menetelmässä pintaveden korkeus ja pohjaveden muodostuminen linkitettiin ajan suhteen muuttuvina reunaehtoina pohjavedenvirtauksen mallinnusohjelmaan MODFLOW. Simuloidut pintaveden pinnankorkeudet saatiin Suomen ympäristökeskuksen vesistömallijärjestelmästä ja pohjaveden muodostuminen simuloitiin 1D lämmön- ja aineensiirtomallilla, CoupModel. Pudasjärven Törrönkankaan pohjavesimuodostumasta, Pudasjärvestä, Kivarinjoesta ja lumesta kerättiin näytteet ja niistä määritettiin Ca2+, Cl-, NO3-N ja SiO2 pitoisuudet sekä sähkönjohtavuus. Pitoisuudet pohja- ja salpavedessä olivat hyvin samanlaiset. Pitoisuudet yleisesti pienenivät, kun pohjaveden pinnankorkeus nousi etenkin keväisin lumien sulamisen jälkeen. Ainoastaan salpavedessä NO3-N pitoisuus kasvoi, kun pohjaveden pinnankorkeus nousi. Tämä johtuu todennäköisesti salpaveden yläpuolella olevasta NO3-N lähteestä. Cl- pitoisuus pohjavedessä pieneni, kun pintaveden korkeus nousi korkeammalle kuin pohjavesi. A1B ilmastoskenaariossa pohjaveden muodostumisen ennakoidaan lisääntyvän talvikuukausina. Tämä johtuu lumen sulannan lisääntymisestä ja roudan vähenemisestä. Keväinen lumen sulamisen huippu voi mahdollisesti pienentyä ja johtaa pohjavesivarojen pienentymiseen keväisin. A1B ilmastoskenaariossa pinta- ja pohjaveden vuorovaikutus voi myös muuttua ja siten vaikuttaa pohjaveden määrään ja mahdollisesti myös laatuun.

Identiferoai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn978-951-42-9701-4
Date30 November 2011
CreatorsOkkonen, J. (Jarkko)
ContributorsKløve, B. (Bjørn)
PublisherOulun yliopisto
Source SetsUniversity of Oulu
LanguageEnglish
Detected LanguageFinnish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess, © University of Oulu, 2011
Relationinfo:eu-repo/semantics/altIdentifier/pissn/0355-3213, info:eu-repo/semantics/altIdentifier/eissn/1796-2226

Page generated in 0.0016 seconds