Return to search

Developing chemically mutagenized soybean populations for functional gene anaylses at the Rhg1 locus

Soybean (Glycine max (L.) Merr.) cyst nematode (SCN) (Heterodera glycines Ichinohe), an obligate sedentary endoparasite, is the most economically destructive pathogen in soybean production and causes over $1 billion in annual losses in the United States. Planting resistant cultivars is the primary management method to control SCN for the long-term purpose, but the nature of genetic resistance is little known. The Rhg1 (Resistance to H. glycines) locus on chromosome 18 is found as a major quantitative trait locus (QTL) that contributes resistance to SCN. The chemical mutagen ethylmethane sulfonate (EMS) can be utilized to induce genetic mutations in soybean populations, which screened by an efficient reverse genetic strategy known as Targeting Induced Local Lesions IN Genomes (TILLING) for functional gene analyses. The objective of this study was to analyze the function of SNAP gene (Glyma18g02590) at rhg1 allele from `Forrest' (`Peking'-derived SCN resistant cultivar) using TILLING. Soybean cultivar `Forrest' seeds were mutagenized with EMS and grown to generate M1 plants. M1 plants were self-pollinated to produce approximately 3000 M2 plants. Genomic DNAs were extracted from young leaves of individual M2 plants and quantified to normalize concentration of DNAs. The DNA samples were then pooled eight-fold in 96-well plates for mutations screening by TILLING. Moreover, 12 phenotypic traits including chlorophyll deficiency, leaf shape, branch architecture, seed color, seed weight, fatty acid phenotype were identified in the mutagenized population, analyzed and archived in this study.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-2273
Date01 August 2013
CreatorsZhou, Zhou
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses

Page generated in 0.0024 seconds