In this thesis, the conventional low voltage power line communication methods is
investigated in the axis of automated meter reading applications and the classification
and experimental verification of common noise types for low voltage power line
communication network. The investigated system provides the real time transmission
of electricity consumption data recorded by electricity meters, initially to a local
computer via a low voltage line through a low speed PLC (Power Line Carrier)
environment and subsequently to a corporate network through a high speed data
transmission medium. The automated meter system provides a more effective
tracking and data acquisition, a more detailed and vigorous knowledge about
consumer behavior for subscriber assessment in electricity distribution in association
with a brand new management and system supervision concept in electricity
distribution control and management technology. The theoretical studies are
experimentally verified for the Turkish low voltage power infrastructure through
laboratory experiments performed in METU Electrical and Electronics Engineering
Department, Electrical Machines and Drives Laboratory and R& / D Laboratories of MAKEL facilities in Hadimkö / y. The single phase voltage of the mains line between
the phase and neutral is monitored to exhibit the disturbing effects of various noise
sources. The resulting voltage spectrum is logged by using digital data acquisition
devices in time and frequency domain. The waveforms are converted to frequency
domain using the Fast Fourier Transform (FFT) functions of the MATLAB. The
experimental results are compared to the theoretical findings obtained through
literature survey.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12610469/index.pdf |
Date | 01 February 2009 |
Creators | Danisman, Batuhan |
Contributors | Sevaioglu, Osman |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0018 seconds