Return to search

Understanding Spatio-Temporal Variability and Associated Physical Controls of Near-Surface Soil Moisture in Different Hydro-Climates

Near-surface soil moisture is a key state variable of the hydrologic cycle and plays a significant role in the global water and energy balance by affecting several hydrological, ecological, meteorological, geomorphologic, and other natural processes in the land-atmosphere continuum. Presence of soil moisture in the root zone is vital for the crop and plant life cycle. Soil moisture distribution is highly non-linear across time and space. Various geophysical factors (e.g., soil properties, topography, vegetation, and weather/climate) and their interactions control the spatio-temporal evolution of soil moisture at various scales. Understanding these interactions is crucial for the characterization of soil moisture dynamics occurring in the vadose zone.

This dissertation focuses on understanding the spatio-temporal variability of near-surface soil moisture and the associated physical control(s) across varying measurement support (point-scale and passive microwave airborne/satellite remote sensing footprint-scale), spatial extents (field-, watershed-, and regional-scale), and changing hydro-climates. Various analysis techniques (e.g., time stability, geostatistics, Empirical Orthogonal Function, and Singular Value Decomposition) have been employed to characterize near-surface soil moisture variability and the role of contributing physical control(s) across space and time. Findings of this study can be helpful in several hydrological research/applications, such as, validation/calibration and downscaling of remote sensing data products, planning and designing effective soil moisture monitoring networks and field campaigns, improving performance of soil moisture retrieval algorithm, flood/drought prediction, climate forecast modeling, and agricultural management practices.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/149547
Date03 October 2013
CreatorsJoshi, Champa
ContributorsMohanty, Binayak P., Singh, Vijay P., Kaiser, Ronald A., Zhan, Hongbin
Source SetsTexas A and M University
LanguageEnglish
Detected LanguageEnglish
TypeThesis, text
Formatapplication/pdf

Page generated in 0.0075 seconds