Return to search

Développement d’un capteur de gaz à base de couche hybride dioxyde d’étain / nanotubes de carbone / Development of gas sensor based on hybrid layer of tin oxide / carbon nanotubes

L’objectif de cette étude est le développement d’un capteur de gaz à base de couche hybrideSnO2/SWNTs dans le but d’améliorer les performances des capteurs chimiques « classiques »uniquement constitués de dioxyde d’étain. En premier lieu, afin de maîtriser la synthèse dumatériau sensible, nous avons validé l’élaboration d’une couche sensible à base de dioxyded’étain préparée par procédé sol-gel. Le matériau synthétisé a été déposé par la technique ‘microgoutte’sur une micro-plateforme permettant simultanément le chauffage de la couche sensible etla mesure de sa conductance. L’étude des réponses électriques du capteur de gaz en présence dubenzène a permis de valider la possibilité d’utilisation du sol d’étain préparé pour la réalisation decouches sensibles aux gaz. En effet, des traces de benzène (500 ppb) ont été détectées à latempérature optimale de couche sensible de 420°C.Le second volet de cette étude repose sur la fabrication du matériau hybride obtenu par dispersiondes nanotubes de carbone dans un sol d’étain. Les couches sensibles élaborées par dip-coating àpartir du sol d’étain modifié par les nanotubes de carbone ont clairement montré la possibilité dedétection de divers gaz (ozone et ammoniac) à température ambiante. Ce résultat constitue l’undes points importants de ce travail de thèse dans la mesure où jusqu’à présent les capteurschimiques à base de dioxyde d’étain ne présentaient une forte sensibilité aux gaz que pour destempératures de fonctionnement de l’ordre de 350-400°C. Pour les deux gaz cibles étudiés dans lecadre de ce travail, la limite de détection à température ambiante a été évaluée à 1 ppm enprésence de NH3 et est inférieure à 20 ppb en présence d’ozone.La dernière partie de ce travail a porté sur l’optimisation des performances de détection descouches hybrides. Dans ce cadre, les expérimentations ont porté sur l’étude de l’influence dedivers paramètres tels que la quantité de nanotubes dans le matériau hybride, la température decalcination de la couche sensible, la température de fonctionnement ou encore les propriétésphysico-chimiques des nanotubes de carbone (mode de synthèse, diamètre,…) sur l’efficacité dedétection des couches sensibles. Les résultats ainsi obtenus en termes de performance de détectionont été discutés en relation avec les paramètres expérimentaux utilisés. / The objective of this study is to develop a gas sensor based on a hybrid layer of SnO2/SWNTs inorder to improve the performance of “Conventional” chemical sensors basically made from tinoxide. First, in order to control the synthesis of the sensitive material, we validated the elaborationof a sensitive layer based on tin dioxide prepared using the sol-gel process. The synthesizedmaterial was deposited by the 'microdrop' technique on a micro-platform which simultaneouslyallows the heating of the sensitive layer whilst also measuring its conductance. The study of theelectrical responses of the gas sensor in the presence of benzene has allowed us to validate thepossibility of using our prepared tin sol for the realization of gas sensitive layers. In fact, it waspossible to detect benzene at traces with an optimal temperature of the sensing layer found to be420ºC.The second part of this study describes the synthesis of the hybrid sensor obtained by dispersingSWNTs in the tin-oxide based sol. The sensitive layers made by dip-coating from the carbonnanotubes modified tin sol have clearly shown the possibility of detecting various gases (ozoneand ammonia) at room temperature. This result is one the most important points of this work tothe extent that until now the chemical sensors based on tin dioxide only showed a high sensitivityto gases when they were operated at temperatures in the range of 350 - 400ºC. Concerning the twotarget gases tested in this work, the detection limit at room temperature was evaluated at 1 ppm inthe presence of NH3 and was lower than 20 ppb in the presence of ozone.The last part of this work has focused the optimization of the detection performance of thesensitive layers. In this case, the experimental study was oriented towards examination of theeffect of various parameters such as the amount of nanotubes in the hybrid material, thecalcination temperature of the sensitive layer, the sensor working temperature and also thephysico-chemical properties of the carbon nanotubes (synthesis method, diameter...) on thedetection efficiency of the sensing layers. The results obtained in terms of detection performancewere discussed in relation to the experimental parameters used.

Identiferoai:union.ndltd.org:theses.fr/2012BESA2028
Date24 February 2012
CreatorsGhaddab, Boutheina
ContributorsBesançon, Berger, Franck
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds