<p>This thesis is concerned with an experimental platform for studying cooperative driving and techniques for embedded systems programming. Cooperative driving systems use vehicle-to-vehicle and vehicle-to-infrastructure communication for safe, smooth and efficient transportation. Cooperative driving systems are considered as a promising solution for traffic situations such as blind crossings. For the thesis work we use a robotic vehicle known as PIE (Platform for Intelligent Embedded Systems) equipped with a wireless communication device, electrical motors and controlled via a SAM7-P256 development board. For the infrastructure side we use a SAM7-P256 development board equipped with nRF24l01. Vehicle to vehicle and base station to vehicle communication is established and different platooning scenarios are implemented. The scenarios are similar to platooning scenarios from the Grand Cooperative Driving Challenge GCDC1. The performance of the platoon control algorithm is measured in terms of throughput (a measure of string stability), smoothness and safety, where the safety requirements serve as pass/fail criteria.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:hh-5621 |
Date | January 2010 |
Creators | Woldu, Essayas Gebrewahid, Jokhio, Fareed Ahmed |
Publisher | Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0019 seconds