This research developed two innovative test methods that were used to experimentally evaluate the performance of a novel blade tip timing (BTT) system from Prime Photonics, LC. The research focused on creating known blade tip offsets and tip vibrations so that the results from a BTT system can be validated. The topic of validation is important to the BTT field as the results between many commercial systems still are not consistent. While the system that was tested is still in development and final validation is not complete, the blade tip offset and vibration frequency validation results show that this BTT system will be a valuable addition to turbomachinery research and development programs once completed.
For the first test method custom rotors were created with specified blade tip offsets. For the blade tip offset alternate measurement, the rotors were optically scanned and analyzed in CAD software with a tip location uncertainty of 0.1 mm. The BTT system agreed with the scanned results to within 0.13 mm. Tests were also conducted to ensure that the BTT system identified and indexed the blades properly.
The second developed test method used an instrumented piezoelectric blade to create known dynamic deflections. The active vibration rotor was able to create measureable deflection over a range of frequencies centered on the first bending mode of the blade. The results for the 110 Hz, 150 Hz, 180 Hz first bending resonance, 200 Hz, and 1036 Hz second bending resonance cases are presented. A strain gage and piezoelectric sensor were attached to the active blade during the dynamic deflection tests to provide an alternate method for determining blade vibration frequency. The BTT system correctly identified the active blade excitation frequencies as well as a 120 Hz frequency from the drive motor.
This thesis also explored applying BTT methods and testing to more realistic blade geometry and vibration. Blade vibrations are usually classified by their frequency relative to the rotation speed. Synchronous vibrations are integer multiples of the rotational speed and are often excited by struts or vanes fixed to the engine case. For this reason, special probe placement algorithms were explored that use sine curve fitting to optimize the probe placement. Knowing how the blade will vibrate at operation before testing is critical as well. In preparation for future research, ANSYS Mechanical was used to predict the first three modes of a PT6A-28 first stage rotor blade at 1,966, 5,539, and 7,144 Hz. These frequencies were validated to within 4% using scanning laser vibrometry. The simulation was repeated at speed to produce a Campbell Diagram to highlight synchronous excitation crossings. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/47496 |
Date | 21 April 2014 |
Creators | Pickering, Todd Michael |
Contributors | Mechanical Engineering, O'Brien, Walter F. Jr., West, Robert L., Wicks, Alfred L. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds