Return to search

Improvement of alumina mechanical and electrical properties using multi-walled carbon nanotubes and titanium carbide as a secondary phase

Thesis (M.Sc.(Engineering)--University of the Witwatersrand, Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, 2012,. / The objective of this research was to improve alumina (Al2O3) mechanical and electrical properties by reinforcement using multi-walled carbon nanotubes (MWCNTs) and titanium carbide (TiC). The objective of the study was achieved with interesting and challenging difficulties along the way. The MWCNTs were initially coated with boron nitride (hBN) in order to improve the Alumina-CNTs interface which was previously discovered to be weak and also to protect them from reacting with Al2O3 during sintering. The coating of CNTs with hBN was done using nitridation method. This method was unsuccessful since it was not possible to coat each CNT individually. Dispersing hBN coated CNTs proved to be impossible without pealing the off the hBN coating. The “flaking off “of the hBN coating from the CNTs revealed that the CNT-hBN interface was weak; therefore uncoated CNTs were used for this study.
The starting powders (Al2O3, TiC and CNTs) were individually dispersed before they were mixed together. TiC and Al2O3 were dispersed using an ultrasonic probe which was done successfully. The CNTs were dispersed by an ultrasonic probe and then attritor milled with the use of polyvinylpyrolidone (PVP) as a dispersant. The dispersed Al2O3 and TiC (30 wt%) powders were mixed in a planetary ball mill. The composite powder was sieved and sintered using SPS with temperature and pressure programmed to be 1700˚C, 35MPa respectively. In making the Al2O3+CNT composite powder, the already dispersed Al2O3 and CNTs (1 wt%) were mixed in a planetary ball mill, after sieving the powder it was sintered using SPS at 1600˚C, 35MPa (programmed conditions). Lastly in making the Al2O3+CNT+TiC composite, the already dispersed TiC, CNTs and Al2O3 were all mixed in a planetary ball mill, after sieving it was sintered using SPS at 1650˚C, 35MPa (programmed conditions). For comparison of properties, dispersed monolithic Al2O3 was also sintered using SPS at 1600˚C, 35 MPa. The density results showed that the monolithic Al2O3 was 99.8% dense, , Al2O3+CNTs was 99.4%, Al2O3+TiC+CNTs was 99.2% and Al2O3+TiC sample was 99.0%. The mechanical properties of the samples were measured using the indentation method. The hardness and fracture toughness of the samples were; Al2O3= 3.3MPa√m (17 GPa), Al2O3+CNTs = 4.2MPa√m (18 GPa), Al2O3+TiC = 4.8 MPa√m (23 GPa) and Al2O3+TiC+CNT= 5.0 MPa√m (23 GPa). The electrical properties showed that incorporating CNTs and TiC into Al2O3 improved Al2O3 electrical conductivity. The measured electrical conductivity of the ceramic samples were; Al2O3
iii
≈ 0 Sm-1, Al2O3+CNTs= 30 S.m-1, Al2O3 +TiC + CNTs = 6855 S.m-1 and Al2O3+TiC = 9664 S.m-1. The CNTs improved Al2O3 mechanical properties slightly inhibiting grain growth by pinning the grain boundary movement and also by crack bridging. The Al2O3 electrical conductivity was increased by the CNTs network that was located along the alumina grain boundaries. The TiC improved Al2O3 mechanical properties slightly inhibiting grain growth and through crack deflection mechanism. The addition of TiC into Al2O3 increased the electrical conductivity by serving as a conducting continuous secondary phase.
The results show that the CNT-hBN interface is weak. The addition of CNTs and TiC into monolithic Al2O3 slightly improved its mechanical and electrical properties but it density was slightly compromised. CNTs and TiC slightly improved monolithic alumina hardness by in inhibiting Al2O3 grain growth and the fracture toughness through crack deflection and crack bridging mechanisms. The CNTs network located at the Al2O3 grain boundaries not only aided in improving Al2O3 hardness but also served as transport medium for electrons hence increasing the Al2O3 electrical conductivity. Addition of TiC into Al2O3 increased its electrical conductivity by conducting electrons from one TiC grain to the adjacent grain. The large increase in electrical conductivity upon addition of TiC is due to the presence of a continuous TiC phase within Al203.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/13190
Date04 October 2013
CreatorsNyembe, Sanele Goodenough
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0028 seconds