Return to search

Software Benchmark and Material Selection in an Exhaust Manifold : Thermo-mechanical fatigue simulation of an exhaust manifold in AVL Fire M / Jämförelse av mjukvara och materialval för ett avgassystem : Termo-mekanisk utmattnings simulering av ett avgassystem i AVL Fire M och ABAQUS

Today, there is a great focus on downsizing the engines, this means that the engines are made smaller in size but retain the same power. This in combination with the drive to increase the power of the engines has led to the engine components being exposed to high thermal loads. Today’s engines also use very high cylinder pressure. The high thermal loads in combination with the high cylinder pressure have led to that the engine components are often very close to their material limits, so close that damage is common. This places high requirements on the materials, which makes the material selection a critical part of the engineering process.The main focus in this thesis work has been to develop and investigate a FEM model that can be used to quickly evaluate materials in an exhaust manifold that is exposed to thermo-mechanical fatigue (TMF). The model was then used to verify a material selection made for an existing exhaust manifold. One of AVL’s own software programs has also been evaluated, to see if it is a viable alternative to ABAQUS when preforming TMF simulations.The material selection made in this master thesis had the restriction that the exhaust manifold should not fail due to low cycle fatigue (LCF) when exposed to TMF. The goal has been to minimize the mass of the exhaust manifold by selecting a strong material with low density. The reason for this is because today there is a big focus on energy efficient cars with low emission levels. The simplest way to achieve this is to minimize the mass of the vehicle.The simulations conducted in this work has been performed in two different software’s, ABAQUS and AVL Fire M. In AVL Fire M flow simulations and steady-state heat transfer simulations have been performed. In ABAQUS, steady-state and transient heat transfer simulations and stress-strain simulations have been performed.The material selection process showed that Inconel 601 is the most suitable material for an exhaust manifold exposed to TMF. The simulations using Inconel 601 showed that this material will not fail due to LCF.The FEM model that was developed in this thesis was a lot faster compared to the existing TMF model used at AVL.CPU time for the existing model: 14 days 13 hours 14 minutes and 30 seconds (Core time).CPU time for the model developed in this thesis: 1 day 6 hours 37 minutes and 49 seconds (Core time).Two alternative models have been proposed for TMF simulations, one that uses the model developed in this thesis and one that is a combination of the existing model and the model developed in this work.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-68662
Date January 2018
CreatorsRombo, Oskar
PublisherKarlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds