Return to search

Mechanisms generating biological diversity in the genus Platypleura Amyot & Serville, 1843 (Hemiptera: Cicadidae) in southern Africa: implications of a preliminary molecular phylogeny

Truly understanding biological diversity requires a move from descriptive studies to mechanistic interpretations based on comparative biology and a thorough recognition of the natural history of the focal organisms. A useful step in such comparative studies is the generation of a phylogeny, so that one can assess the phylogenetic independence of the focal taxa and trace the evolutionary significance of their characteristics. As a preliminary to such studies on the platypleurine cicada genus Platypleura, we sequenced 498 bases of the cytochrome oxidase I (COI) gene from thirteen African species. To circumvent problems with outgroup selection, we also included sequences from representatives of the platypleurine genera Brevisiana, Capcicada, Munza, Oxypleura, Severiana, and Systophlochius, all of the subtribe Platypleuriti, and two species of the genus Ugada, of the subtribe Hainanosemiiti. The resulting phylogenies support the synonymization of the monotypic genus Systophlochius with the widespread, speciose genus Platypleura; confirm the placement of Platypleura sp. 7 in that genus; and confirm the independence of Capcicada and Platypleura. Although the preliminary phylogeny lacks strong support at many nodes, it suggests that three radiations of Platypleura have occurred in southern Africa and that there was progressive southward speciation of these radiations. A novel modification of the ancestral area analysis further suggests that the group has an ancestral association with acacias but there were five independent speciation events associated with host- switching. These insights can be summarized by a general hypothesis that the mechanisms underlying platypleurine biodiversity in southern Africa involve two ancient vicariance events and subsequent speciation by vicariance, switching of plant associations, and changes of habitat preferences. We offer this example to illustrate how analysis of preliminary data can help to generate hypotheticodeductive research hypotheses, to provoke interest in testing these hypotheses, and to illustrate the utility of phylogenies beyond systematics.

Identiferoai:union.ndltd.org:Rhodes/oai:eprints.ru.ac.za:115
Date11 1900
CreatorsVillet, M.H., Barker, N.P., Lunt, N.
Source SetsRhodes University SA
Detected LanguageEnglish
TypeArticle, PeerReviewed
Formatapplication/pdf
Relationhttp://eprints.ru.ac.za/115/

Page generated in 0.0019 seconds