Return to search

Catalytic co-valorization of C1 and N1 compounds towards nitrile chemicals

[ES] El panorama industrial actual se enfrenta a desafíos significativos mientras transita hacia la descarbonización y la sostenibilidad, impulsado por el imperativo de lograr emisiones netas cero para 2050. Se espera una importante contribución hacia este objetivo al conectar materias primas no convencionales y renovables, alternativas a los materiales fósiles convencionales como el petróleo, a las cadenas de valor existentes de la industria química.
Actualmente, existe un creciente interés industrial en la producción de nitrilos de cadena corta como HCN y acetonitrilo, mientras que se espera que las tasas de demanda global disminuyan en los próximos años en el caso del acrilonitrilo. Como reemplazo para materias primas convencionales para la producción de nitrilos, como las olefinas ligeras C2-3 de origen fósil, el desarrollo de rutas de conversión selectivas a partir de bloques de construcción C1 renovables, como el bio/e-syngas o su derivado metanol, y precursores N1 renovables, como el amoníaco verde, proporciona rutas hacia los productos químicos nitrilos, prospectivamente con una huella de carbono más baja.
La presente tesis desarrolla y estudia catalizadores sólidos capaces de dirigir simultáneamente reacciones de acoplamiento C-N y C-C para la producción de nitrilos alifáticos C2+, particularmente acetonitrilo. Se hace hincapié en desvelar la naturaleza y estructura del verdadero catalizador activo, que se desarrolla bajo las condiciones del proceso. Específicamente, la tesis estudia efectos promocionales provocados por la combinación de dos metales en compuestos intersticiales mixtos de metales, aleaciones y compuestos intermetálicos.
En primer lugar, se realizan estudios catalíticos y teóricos complementarios de Teoría del Funcional de la Densidad (DFT) sobre la conversión de mezclas de amoníaco (N1) y gas de síntesis (C1, CO+H2) a acetonitrilo con un (pre)catalizador monometálico MoO3. Estos estudios demuestran que MoN1-x, que se desarrolla mediante nitridación superficial, es el catalizador activo real y sugieren que la activación disociativa de HCN, asistida por oxígeno, es el paso controlante de la cinética de formación de acetonitrilo.
A continuación, se estudian efectos promocionales de metales de transición divalentes de primera fila en catalizadores basados en molibdeno, utilizando un conjunto de compuestos de molibdato mixto cristalino, estructuralmente análogos, como precursores de catalizador. El dopado con Mn (Mn:Mo ~1) proporciona un catalizador particularmente selectivo y estable para la síntesis de acetonitrilo a partir de mezclas de NH3/gas de síntesis, logrando una tasa de formación de acetonitrilo de 50·10-3 mmol gcat-1 min-1 a 723K. Un conjunto de métodos in situ y operando con sensibilidad bulk y superficial, proporcionan evidencias de que un oxinitruro mixto MnM, con una simetría Fm-3m, y rico en defectos estructurales, representa el catalizador activo. Se sugiere que la mayor oxofilia del oxinitruro mixto MnMo, junto con el papel clave del oxígeno superficial para la activación disociativa de HCN, subyacen al efecto sinérgico de ambos metales.
Finalmente, se estudió la conversión de mezclas en fase vapor de metanol (C1) y amoníaco (N1) a compuestos nitrogenados sobre nanocristales bimetálicos GaNi soportados en SiO2. Las aleaciones desordenadas de GaNi (Ga/(Ga+Ni)< 20%) son particularmente selectivas hacia la síntesis de nitrilos, mientras que los compuestos intermetálicos GaNi (Ga/(Ga+Ni)> 40%) catalizan principalmente la aminación de metanol a metilaminas. La difracción de rayos X y espectroscopía de absorción de rayos X, in situ y operando, revelan que el galio es un promotor necesario, el cual contribuye a la estabilización de fases expandidas de fcc Ni(C,N) así como Ni3C, a temperaturas relevantes para la catálisis (673-773K), cuyo desarrollo en la superficie del catalizador corresponde al inicio de la producción de nitrilos C2+ mediante la integración de reacciones de acoplamiento C-N y C-C. / [CA] El panorama industrial actual s'enfronta a desafiaments significatius mentres transita cap a la descarbonització i la sostenibilitat, impulsat per l'imperatiu d'aconseguir emissions netes zero per a 2050. S'espera una important contribució cap a este objectiu en connectar matèries primeres no convencionals i renovables, alternatives als materials fòssils convencionals com el petroli, a les cadenes de valor existents de la indústria química.
Actualment, existix un creixent interés industrial en la producció de nitrils de cadena curta com HCN i acetonitril, mentres que s'espera que les taxes de demanda global disminuïsquen en els pròxims anys en el cas del acrilonitrilo. Com a reemplaçament per a matèries primeres convencionals per a la producció de nitrils, com les olefines lleugeres C2-3 d'origen fòssil, el desenvolupament de rutes de conversió selectives a partir de blocs de construcció C1 renovables, com el bio/e-syngas o el seu derivat metanol, i precursors N1 renovables, com l'amoníac verd, proporciona rutes cap als productes químics nitrils, prospectivament amb una petjada de carboni més baixa.
La present tesi desenvolupa i estudia catalitzadors sòlids capaços de dirigir simultàniament reaccions d'acoblament C-N i C-C per a la producció de nitrils alifàtics C2+, particularment acetonitril. Es posa l'accent a revelar la naturalesa i estructura del verdader catalitzador actiu, que es desenvolupa sota les condicions del procés. Específicament, la tesi estudia efectes promocionals provocats per la combinació de dos metalls en compostos intersticials mixtos de metalls, aliatges i compostos intermetàl·lics.
En primer lloc, es realitzen estudis catalítics i teòrics complementaris de Teoria del Funcional de la Densitat (DFT) sobre la conversió de mescles d'amoníac (N1) i gas de síntesi (C1, CO + H2) a acetonitril amb un (pre)catalitzador monometálico MoO3. Estos estudis demostren que MoN1-x, que es desenvolupa mitjançant nitridació superficial, és el catalitzador actiu real i suggerixen que l'activació dissociativa de HCN, assistida per oxigen, és el pas controlante de la cinètica de formació d'acetonitril.
A continuació, s'estudien efectes promocionals de metalls de transició divalentes de primera fila en catalitzadors basats en molibdé, utilitzant un conjunt de compostos de molibdat mixt cristal·lí, estructuralment anàlegs, com a precursors de catalitzador. El dopat amb Mn (Mn:Mo ~1) proporciona un catalitzador particularment selectiu i estable per a la síntesi d'acetonitril a partir de mescles de NH3/gas de síntesi, aconseguint una taxa de formació d'acetonitril de 50·10-3 mmol gcat-1 min-1 a 723 K. Un conjunt de mètodes in situ i operant amb sensibilitat bulk i superficial, proporcionen evidències que un oxinitrur mixt MnM, amb una simetria Fm-3m, i ric en defectes estructurals, representa el catalitzador actiu. Se suggerix que la major oxofilia del oxinitrur mixt MnMo, juntament amb el paper clau de l'oxigen superficial per a l'activació dissociativa de HCN, subjauen a este efecte sinèrgic de tots dos metalls.
Finalment, es va estudiar la conversió de mescles en fase vapor de metanol (C1) i amoníac (N1) a compostos nitrogenats sobre nanocristalls bimetàl·lics GaNi suportats en SiO2. Els aliatges desordenats de GaNi (Ga/(Ga+Ni)< 20 %) són particularment selectives cap a la síntesi de nitrils, mentres que els compostos intermetàl·lics GaNi (Ga/(Ga+Ni)> 40 %) catalitzen principalment l'aminació de metanol a metilamines. La difracció de raigs X i espectroscòpia d'absorció de raigs X, in situ i operant, revelen que el gal·li és un promotor necessari, el qual contribuïx a l'estabilització de fases expandides de fcc Ni(C,N) així com Ni3C, a temperatures rellevants per a la catàlisi (673-773 K), el desenvolupament de la qual en la superfície del catalitzador correspon a l'inici de la producció de nitrils C2+ mitjançant la integració de reaccions d'acoblament C-N i C-C. / [EN] The current industrial landscape is facing significant challenges as it transitions towards decarbonization and sustainability, driven by the imperative of achieving net-zero emissions by 2050. An important contribution towards this goal is expected from connecting unconventional and renewable feedstocks, alternative to conventional fossil raw materials such as crude oil, to existing value chains of the chemical industry.
There is currently growing industrial interest in the production of short-chain nitriles such as acid cyanide and acetonitrile, while lower global demand rates are expected in the next years for acrylonitrile. Departing from conventional raw materials for nitrile production, such as C2-3 light olefin petrochemicals, the development of selective conversion routes from renewable C1 building blocks, such as bio/e-syngas or its derivative methanol, and renewable N1 precursors, like green ammonia, provides prospectively lower carbon footprint routes towards nitrile commodity chemicals.
The present thesis develops and studies solid catalysts able to concomitantly steer C-N and C-C coupling reactions for the production of C2+ aliphatic nitrile N-chemicals, precisely acetonitrile. Emphasis is placed on unveiling the nature and structure or the true working catalyst, which develops under relevant process conditions. Specifically, the thesis studies promotional effects brought about by the combination of two metals in mixed-metal interstitial compounds, alloys and intermetallic compounds.
First, complementary catalytic and theoretical Density Functional Theory studies on the conversion of mixtures of ammonia (N1) and syngas (C1, CO and H2) to acetonitrile with a monometallic MoO3 (pre)catalyst show MoN1-x, which develops upon near-surface nitridation, as the actual working catalyst and suggest O-assisted dissociative activation of HCN as a kinetically controlling step towards acetonitrile and higher nitriles.
Next, promotional effects by first-row divalent transition metals on molybdenum-based catalysts are studied, using a set of structurally analogous crystalline ammonium mixed-metal molybdate compounds as catalyst precursors. Doping with Mn (Mn:Mo ~1) affords a particularly selective and stable catalyst for acetonitrile synthesis from NH3/syngas mixtures, achieving an acetonitrile formation rate of 50·10-3 mmol gcat-1 min-1 at 723 K. A battery of in situ and operando bulk and near-surface sensitive methods provide evidence that a defective MnMo mixed-metal oxynitride, with a Fm-3m symmetry, best represents the working catalyst. The higher oxophilicity of the mixed-metal MnMo oxynitride, alongside the key role of surface oxygen for HCN dissociative activation, is suggested to underlie the Mn-Mo bimetallic synergistic effect.
Finally, the conversion of vapor mixtures of methanol (C1) and ammonia (N1) to N-compounds was studied on SiO2-supported GaNi bimetallic nanocrystals. Disordered GaNi alloys (Ga/(Ga+Ni)< 20 %) show to be particularly selective towards nitrile synthesis, whereas GaNi intermetallic compounds (Ga/(Ga+Ni)> 40 %) catalyzed primarily methanol amination to methylamines. In situ and operando X-ray diffraction and X-ray absorption spectroscopy reveal that Ga is a necessary promoter in nickel-based nanocrystals, contributing to the stabilization of expanded fcc Ni(C,N) and Ni3C phases at catalysis relevant temperatures (673-773 K), whose development on the catalyst surface corresponds to the onset of C2+ nitrile production by integration of C-N and C-C coupling reactions. / Martínez Monje, ME. (2024). Catalytic co-valorization of C1 and N1 compounds towards nitrile chemicals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207107

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/207107
Date04 July 2025
CreatorsMartínez Monje, María Elena
ContributorsPrieto González, Gonzalo, Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/embargoedAccess

Page generated in 0.004 seconds