Diffuse optical tomography uses near infrared (NIR) light as the probing media to re-cover the distributions of tissue optical properties with an ability to provide functional information of the tissue under investigation. As NIR light propagation in the tissue is dominated by scattering, the image reconstruction problem (inverse problem) is non-linear and ill-posed, requiring usage of advanced computational methods to compensate this.
Diffuse optical image reconstruction problem is always rank-deficient, where finding the independent measurements among the available measurements becomes challenging problem. Knowing these independent measurements will help in designing better data acquisition set-ups and lowering the costs associated with it. An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for knowing the independency of a particular measurement on its counterparts. The utility of the proposed scheme is demonstrated using simulated and experimental gelatin phantom data set comparing it with the state-of-the-art methods.
The traditional image reconstruction methods employ ℓ2-norm in the regularization functional, resulting in smooth solutions, where the sharp image features are absent. The sparse recovery methods utilize the ℓp-norm with p being between 0 and 1 (0 ≤ p1), along with an approximation to utilize the ℓ0-norm, have been deployed for the reconstruction of diffuse optical images. These methods are shown to have better utility in terms of being more quantitative in reconstructing realistic diffuse optical images compared to traditional methods.
Utilization of ℓp-norm based regularization makes the objective (cost) function non-convex and the algorithms that implement ℓp-norm minimization utilizes approximations to the original ℓp-norm function. Three methods for implementing the ℓp-norm were con-sidered, namely Iteratively Reweigthed ℓ1-minimization (IRL1), Iteratively Reweigthed Least-Squares (IRLS), and Iteratively Thresholding Method (ITM). These results in-dicated that IRL1 implementation of ℓp-minimization provides optimal performance in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images.
Photoacoustic tomography (PAT) is an emerging hybrid imaging modality combining optics with ultrasound imaging. PAT provides structural and functional imaging in diverse application areas, such as breast cancer and brain imaging. A model-based iterative reconstruction schemes are the most-popular for recovering the initial pressure in limited data case, wherein a large linear system of equations needs to be solved. Often, these iterative methods requires regularization parameter estimation, which tends to be a computationally expensive procedure, making the image reconstruction process to be performed off-line. To overcome this limitation, a computationally efficient approach that computes the optimal regularization parameter is developed for PAT. This approach is based on the least squares-QR (LSQR) decomposition, a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution.
Identifer | oai:union.ndltd.org:IISc/oai:etd.ncsi.iisc.ernet.in:2005/3007 |
Date | January 2014 |
Creators | Shaw, Calvin B |
Contributors | Yalavarthy, Phaneendra K |
Source Sets | India Institute of Science |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | G26754 |
Page generated in 0.0124 seconds