Nowadays, the bevel gears are widely applied in the industry for the intersected-axial transmission system. But the applications of the bevel gears are mostly limited to the usage of involute bevel gears. In this thesis, the bevel gear with circular-arc tooth profiles is derived by using general theorem of conjugate surfaces, coordinate transformation, constrained meshing equation, and spherical trigonometry.
According to the bevel gears with circular-arc tooth profile derived above, the analyses and discussions of the interference are proposed. The interference situation is detected by applying the phase lead-lag concept while circular-arc curve is moving on the spherical cross-section. Furthermore, the ideal conditions to avoid occurrence of interference are proposed. Design charts for the maximum values of tooth profile angle are also constructed as a reference for designers.
The 3D solid models of the bevel gear with circular-arc tooth profiles are constructed by using the computer software (Pro/E). Finally, the transmission ability is verified through the computer animation using CAE software (Visual Nastran). It is believed that the mathematical models and design method developed in the thesis will provide a useful foundation for the further studies.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0723101-203127 |
Date | 23 July 2001 |
Creators | Kuo, Hsiu-Ming |
Contributors | Jao-Hwa Kuang, H. L. Chang, Ying-Chien Tsai |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0723101-203127 |
Rights | off_campus_withheld, Copyright information available at source archive |
Page generated in 0.0021 seconds