Return to search

Advanced materials for block copolymer lithography

The multi-billion dollar per year lithography industry relies on the fusion of chemistry, materials science, and engineering to produce technological innovations that enable continual improvements in the speed and storage density of microelectronic devices. A critical prerequisite to improving the computers of today relies on the ability to economically and controllably form thin film structures with dimensions on the order of tens of nanometers. One class of materials that potentially meets these requirements is block copolymers since they can self-assemble into structures with characteristic dimensions circa three to hundreds of nanometers. The different aspects of the block copolymer lithographic process are the subject of this dissertation. A variety of interrelated material requirements virtually necessitate the synthesis of block copolymers specifically designed for lithographic applications. Key properties for the ideal block copolymer include etch resistance to facilitate thin film processing, a large interaction parameter to enable the formation of high resolution structures, and thin film orientation control. The unifying theme for the materials synthesized herein is the presence of silicon in one block, which imparts oxygen etch resistance to just that domain. A collection of silicon-containing block copolymers was synthesized and characterized, many of which readily form features on approximately the length scale required for next-generation microelectronic devices. The most important thin film processing step biases the orientation of block copolymer domains perpendicular to the substrate by control of interfacial interactions. Both solvent and thermal annealing techniques were extensively studied to achieve orientation control. Ultimately, a dual top and bottom surface functionalization strategy was developed that utilizes a new class of "top coats" and cross-linkable substrate surface treatments. Perpendicular block copolymer features can now be produced quickly with a process amenable to existing manufacturing technology, which was previously impossible. The development of etching recipes and pattern transfer processes confirmed the through-film nature of the features and the efficacy of both the block copolymer design and the top coat process. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/25126
Date11 July 2014
CreatorsBates, Christopher Martin
Source SetsUniversity of Texas
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0021 seconds