Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-01T19:21:42Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dassael Fabricio dos Reis Santos - Dissertação de Mestrado.pdf: 2389476 bytes, checksum: 8ca3d9cabd2862c5e82bc4db0cec4071 (MD5) / Made available in DSpace on 2014-09-01T19:21:42Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dassael Fabricio dos Reis Santos - Dissertação de Mestrado.pdf: 2389476 bytes, checksum: 8ca3d9cabd2862c5e82bc4db0cec4071 (MD5)
Previous issue date: 2014-03-28 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we study existence and multiplicity of non-negative solutions of the nonlinear
elliptic problem −div(A(x,∇u)) = λf(x,u) in Ω, u = 0 in ∂Ω where Ω⊂IRN is a bounded domain with smooth boundary∂Ω,λ≥ 0 is a parameter, f :Ω×[0,∞)−→ IR and A :Ω×IRN−→ IRN satisfy the Carathéodory conditions, A is monotone and f satisfies a growth condition. To this end we use the method of Sub and Supersolutions, Topological Degree Theory, simmetry arguments and variational methods. / Neste trabalho estudaremos existência e multiplicidade de soluções não-negativas do problema elíptico não-linear −div(A(x,∇u)) = λf(x,u) em Ω, u = 0 em ∂Ω, Onde Ω ⊂ IRN é um domínio limitado com fronteira∂Ω suave,λ≥ 0 é um parâmetro, f :Ω×[0,∞)−→ IR e A :Ω×IRN−→ IRN satisfazem as condições de Carathéodory, A é monotônico e f satisfaz uma condição de crescimento. Para este fim utilizaremos o método de Sub e Super Soluções, Teoria do Grau Topológico, argumentos de simetria e métodos variacionais.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/2977 |
Date | 28 March 2014 |
Creators | Santos, Dassael Fabrício dos Reis |
Contributors | Gonçalves, José Valdo Abreu, Gonçalves, José Valdo Abreu, Santos, Carlos Alberto Pereira dos, Carvalho, Marcos Leandro Mendes |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 6600717948137941247, 600, 600, 600, 600, -4268777512335152015, 8398970785179857790, -2555911436985713659, [1] ADAMS, R. A. SobolevSpaces. AcademicPress,NewYork, 1975. [2] AMBROSETTI, A.; ARCOYA, D. AnIntroductiontoNonlinearFunctionalAnalysis andEllipticProblems. Birkhauser, Berlin, 2012. [3] AMBROSETTI, A.; MALCHIODI, A. Nonlinear Analysis and Semilinear Elliptic Problems. CambridgeUniversityPress,NewYork, 2007. [4] BREZIS, H. FunctionalAnalysis,SobolevSpacesandPartialDifferentialEquations. Springer, NewYork, 2011. [5] BROWN, K. J.; BUDIN, V. H. Multiple positive solutions for a class of nonlinear boundaryvalueproblems. J. MathAnal.andApplications, 60:329–338, 1977. [6] BROWN, K. J.; BUDIN, V. H. On the existence of positive solutions for a class of semilinearellipticboundaryvalueproblems. J. MathAnal., 5:875–883,1979. [7] CARL, S.; LE, V. K.; MOTREANU, D. Nonsmoth Variational Problems and Their Inequalities: Comparison Principles and Applications. Springer, New York, 2005. [8] CUESTA, M. Existence results for quasilinear problems via ordered sub and supersolutions. Annales de la Faculté des Sciences de Toulouse, 6o Série no 4, 6:591–608,1997. [9] DANCER, E.; SCHMITT, K. Onpositivesolutionsofsemilinearellipticequations. Proceedings ofthe American Mathematical Society, 101:445–452,1987. [10] DEIMLING, K. NonlinearFunctionalAnalysis. Springer-Verlag, Berlim,1985. [11] DUNFORD, N.; SCHWARTZ, J. T. Linear Operators Part I: General Theory. Interscience Publishers,Inc, NewYork, 1957. [12] FIGUEIREDO, D. G. Equações Elípticas Não-Lineares. Instituto de Matemática Pura eAplicada, Rio de Janeiro, 1977. [13] FOLLAND, G. B. Introduction to Partial Differential Equations. Princeton UniversityPress,NewJersey, 1995. [14] GHERGU, M.; RADULESCU, V. Sublinear singular elliptic problems with two parameters. J. DifferentialEquation, 195:520–536,2003. [15] GILBARG,D.;TRUDINGER,N.S. EllipticPartialDifferentialEquationsofSecond Order. Springer, NewYork, 1983. [16] HAN, Q.; LIN, F. Elliptic Partial Differential Equations. Courant Institute of Mathematical Sciences, NewYork, 2000. [17] HESS, P. On multiple positive solutions of nonlinear elliptic eigenvalue problems. Commun.Partial DifferentialEquations, 6:951–961,1981. [18] KINDERLEHRER, D.; STAMPACCHIA, G. An Introduction to Variational InequalitiesandTheirApplications. AcademicPress,NewYork, 1980. [19] KURA, T. Theweaksupersolution-subsolutionmethodforsecondorderquasilinearallipticequations. HiroshimaMath.J., 19:1–36, 1989. [20] LE, V. K. On some equivalent properties of sub- and supersolutions in second orderquasilinearellipticequations. HiroshimaMath.J., 28:373–380, 1998. [21] LE, V. K. Subsolution-supersolutionsandtheexistenceofextremalsolutionsin noncoercivevariationalinequalities. JIPAM, 2:1–16,2001. [22] LE, V. K.; SCHMITT, K. Onboundaryvalueproblemsfordegeneratequasilinear ellipticequationsandinequalities. J. DifferentialEquations, 144:170–218,1998. [23] LE, V. K.; SCHMITT, K. Sub-supersolution theorems for quasilinear elliptic problems: A variational approach. Electron J. Differential Equations, 118:1–7, 2004. [24] LE, V. K.; SCHMITT, K. Some general concepts of sub-supersolutions for nonlinear elliptic problems. Topological Methods in Nonlinear Analysis, 28:87–103, 2006. [25] LIEBERMAN, G. M. The natural generalization of the natural conditions os ladyzhenskaya and ural’tseva for elliptic equations. Comm. Partial Differential Equations, 16:311–361, 1991. [26] LOC, N. H.; SCHMITT, K. Onpositivesolutionsofquasilinearellipticequations. DifferentialIntegralEquations, 22:829–842, 2009. [27] MEDEIROS, L. A.; MIRANDA, M. M. EspaçosdeSobolev(IniciaçãoaosProblemas Elípticos Não-Homogêneos). Instituto de Matemática - UFRJ, Rio de Janeiro, 2000. [28] O’REGAN, D.; CHO, Y. J.; CHEN, Y.-Q. TopologicalDegreeTheoryandApplications. Chapman and Hall/CRC, New York, 2006. [29] PERAL, I. Multiplicity of Solutions for the p-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997. [30] RABINOWITZ, P. A note on topological degree for potential operators. J. Math. Anal.Appl., 51:483–492, 1975. [31] RUDIN, W. RealandComplexAnalysis. McGrawHillSeriesinHigherMathematics, New York, 2000. [32] SAKAGUCHI, S. Concavity properties of solutions to some degenerate quasilinear elliptic dirichlet roblems. Annali de la Scuola Normale Superiori di Pisa Classe diScienze4e Série, no 3, 14:403–421, 1987. [33] SCHMITT, K.; THOMPSON, R. C. NonlinearAnalysisandDifferentialEquations: AnIntroduction. http://www.math.utah.edu/ schmitt/ode1.pdf, 2004. [34] SCHWARTZ, J. T. Nonlinear Functional Analysis. Gordon and Breach Science Publishers, New York-London-Paris, 1969. [35] STAMPACCHIA, G. EquationsElliptiquesduSecondOrdreaCoefficientsDiscontinus. Les Presses de L’Universite de Montreal, Montreal, 1966. [36] TREVES, F. Basic Linear Partial Differential Equations. Pure and Applied MathematicsVol62. Academic Press, New York-London, 1975. [37] VÁZQUEZ, J. L. A strong maximum principle for some quasilinear elliptic equations. Appl.Math.Optim., 12:191–202, 1984. |
Page generated in 0.0037 seconds