The increasing importance of data in the modern world has created a need for new mathematical techniques to analyze this data. We explore and develop the use of geometry—specifically differential geometry—as a means for such analysis, in two parts. First, we provide a general framework to discover patterns contained in time series data using a geometric framework of assigning distance, clustering, and then forecasting. Second, we attempt to define a Riemannian metric on the space containing the data in order to introduce a notion of distance intrinsic to the data, providing a novel way to probe the data for insight.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1088 |
Date | 01 January 2016 |
Creators | Chu, Casey |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | default |
Page generated in 0.0018 seconds