Uma das questões mais importantes em Teoria de Singularidades é a determinação de condições que garantam a trivialidade topológica em famílias de germes de funções ou aplicações. Neste trabalho é feito um estudo a fim de descrever condições necessárias e suficientes para a trivialidade topológica em famílias de germes de funções com singularidade isolada. Para isto, são apresentados dois métodos. O primeiro é o de campos de vetores controlados, baseado nos trabalhos de Damon-Gaffney e Yoshinaga. O segundo relaciona invariantes associados às famílias de germes de funções com a trivialidade topológica destas. Em ambos os casos, a principal ferramenta é a construção de poliedros de Newton associados às famílias. / One of the most important questions in Theory of Singularities is the determination of conditions that guarantee the topological triviality in families of germs of functions or mappings. In this work a study is made in order to describe necessaries and sufficients conditions for the topological triviality in families of germs of functions with isolated singularity. For this, two methods are presented. The first one is controlled vectors fields method, based on the works of Damon-Gaffney and Yoshinaga. The second relates invariants associated with families of germs of functions with the topological triviality of these. In both cases, the main tool used is the construction of Newton polyhedra associated with families.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01092006-181011 |
Date | 26 January 2006 |
Creators | Silva, Gabriela Castro Vieira da |
Contributors | Saia, Marcelo José |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds