The scalar tensor theory of gravitation is constructed in D dimensions in all possible geometries of spacetime.
In Riemannian geometry, theory of gravitation involves a spacetime metric g with a torsion-free, metric compatible connection structure. If the geometry is non-Riemannian, then the gauge theory of gravitation can be constructed with a spacetime metric g and a connection structure with torsion. In non-Riemannian theory, connections may be metric compatible or non-metric compatible. It is shown that theory of gravitation which involves non-metric compatible connection and torsion, can be rewritten in terms of torsion-free theory. It is also shown that scalar tensor theory
can be reformulated in Einstein frame by applying a conformal transformation. By adding an antisymmetric axion field, the axi-dilaton theory is studied in Riemannian and non-Riemannian geometries. Motion of massive test particles
is examined in all these geometries. The static, spherically symmetric and stationary, Kerr-type axially symmetric solutions of the scalar tensor and axi-dilaton theories are presented. As an application, the geodesic elliptical orbits based on a torsion-free connection and the autoparallel orbits based on a connection with a torsion, are examined in Kerr Brans-Dicke geometry. Perihelion shift of the elliptical orbit is calculated in both cases and the results are compared.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/1006154/index.pdf |
Date | 01 October 2003 |
Creators | Cebeci, Hakan |
Contributors | Karasu, Ayse |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0018 seconds