Return to search

From Knee Osteoarthritis to Post-Operative Total Knee Arthroplasty: Understanding the Role of Muscle Strength, Activation, Biomechanics and Implant Design on Knee Joint Function

Knee osteoarthritis (OA) is a progressive disease that ultimately requires patients to receive a total knee arthroplasty (TKA) to replace the damaged structures within the knee with an artificial joint. Surgeons have many options when selecting an appropriate implant. Patients want a TKA that feels 'normal' and allows them to perform most activities without pain, stiffness, and other residual symptoms. However, 20% of patients remain unsatisfied with their surgery, regardless. This thesis aimed to examine the effect of implant selection during TKA on knee biomechanical function during various ADLs.
Several gaps were identified within the review of literature: 1) patient-reported outcome measures cannot differentiate between medial ball and socket (MBS) and posterior stabilized (PS) implants, 2) most biomechanical studies were performed only in postoperative patients, and 3) studies that compared MBS and PS implants were primarily focused on level walking conditions, and overlooked tasks that placed more demand on the knee joint.
Twenty-eight individuals with severe knee OA were randomized to receive either an MBS (n=14) or PS implant. They completed a biomechanical assessment within one month and one year after TKA and were compared to 14 controls of similar age, sex, and body mass index. They performed a variety of tasks which explored three main areas: 1) examine the alterations in gait variability among individuals with OA following a TKA procedure using either a PS or MBS implant; 2) enhance the understanding of the post-operative effects of TKA with either MBS and PS implants on knee biomechanics and muscle activities during level walking, as well as more demanding tasks such as descending a ramp or staircase; 3) simulate the dynamic knee joint loads in post-operative TKA patients with either PS or MBS implants during closed-chain, bilateral tasks such as sit-to-stand.
Initially, a series of studies were performed to develop a new test called waveform-level variance inequality test (eqvartest), which had not been previously utilized in the literature. This test was used to identify discrepancies in gait variability pre and post-TKA in the gait cycle. Following TKA, patients showed decreased variability in knee moment and power at single-limb support. Neither the MBS nor PS implant provided the same level of variability as the control group, demonstrating reduced knee joint stability.
The MBS group had a gait pattern closer to the control group during level walking, whereas the PS group walked with a stiffer knee. However, during more demanding ADLs, the differences were less apparent. During ramp descent, knee joint stability issues became prominent as MBS and PS groups adopted a 'cautious gait pattern,' widening their base of support and stiffening their knee to reduce loading. During stair descent, the MBS implant provided increased stability as it required less muscle activity than the PS, requiring greater hamstring muscle activation.
During sit-to-stand, MBS and PS groups favoured their non-operated knee as they had reduced total vertical, medial, and lateral KCF on their operated knee compared to their non-operated side. This may be due to compensatory strategies developed through the progression of knee OA and may increase the risk of developing knee OA on the non-operated limb.
The outcomes of this thesis can assist clinicians in selecting the most appropriate implant for their patients and guide them in designing rehabilitation programs that can enhance patient function following TKA.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45465
Date25 September 2023
CreatorsKowalski, Erik
ContributorsLamontagne, Mario, Li, Jing Xian
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0021 seconds