La région boréale arctique (RBA) couvre une vaste étendue qui lui confère un rôle important dans le système climatique mondial, par ses échanges d'énergie et de matière avec l'atmosphère. La température de l'air dans la région boréale arctique a augmenté à des taux disproportionnés par rapport à la moyenne mondiale, entraînant des changements dans la composition et la structure de la végétation. La RBA comprend l'écotone de la forêt boréale et de la toundra (EFT), qui s'étend sur plus de 10,000 km à travers l'hémisphère nord. La structure et la composition de la végétation varient considérablement à travers l’EFT. Du sud au nord, les arbres deviennent plus courts, plus dispersés et finalement absents. Ce gradient entraîne des variations dans la balance énergétique de surface. Ainsi, des changements dans la composition et la structure de la végétation dans l’EFT pourraient influencer le climat régional futur de ces régions. Ces changements régionaux pourraient se répercuter sur le climat mondial en interagissant avec le cycle du carbone par des changements dans les régimes de perturbations et la profondeur de la couche limite atmosphérique. L'objectif de cette étude était de développer un état des lieux de la variation latitudinale des interactions entre la surface et l’atmosphère et du climat régional à travers l’EFT dans le nord-ouest du Canada. Nous avons utilisé des mesures de covariance des turbulences provenant d’une forêt subarctique en marge de l’EFT et d’une toundra minérale caractérisant l’EFT du nord-ouest du Canada afin de quantifier les différences journalière et saisonnières des échanges d'énergie. Quatre paramètres de surface (albédo, conductance aérodynamique, conductance de surface et facteur de découplage) ont été examinés dans le but d’expliquer les différences dans la balance énergétique de surface. Des observations par radiosonde basées sur des campagnes de terrain et une expérience de modélisation de la couche limite atmosphérique ont été réalisées afin de discuter des conséquences potentielles des changements de végétation sur la dynamique de la couche limite atmosphérique (hauteur, température, humidité) et ses implications pour le climat régional. La forêt subarctique a démontré une meilleure capacité à transférer la chaleur vers l’atmosphère et une plus grande résistance à l'évapotranspiration, se traduisant par des conditions atmosphériques plus chaudes et sèches, spécialement au printemps. En été et automne, une conductance de surface plus élevée sur le site de la toundra s’est traduite par à une plus grande proportion de l'énergie utilisée pour humidifier l'atmosphère, résultant en une couche atmosphérique moins épaisse et un refroidissement régional du climat. La caractérisation des interactions entre la surface et l’atmosphère à travers l’EFT contribuera à améliorer les prédictions des effets des changements de végétation en cours sur le climat régional dans la région boréale arctique. / Considering its vast extent, the Arctic-boreal region (ABR) plays an important role in the global climate system through its exchange of energy and matter with the atmosphere. Air temperature across the ABR has been increasing at a higher rate compared to the global average and has led to changes in vegetation composition and structure across the ABR. The ABR includes the forest-tundra ecotone (FTE), spanning more than 10,000 km across the northern hemisphere. As the world’s longest transition zone, the FTE separates the boreal and Arctic biomes over a width of only a few tens to hundreds of kilometers. Vegetation composition and structure varies considerably across the FTE as trees become, from south to north, shorter and more stunted, sparser, and eventually, absent. The associated latitudinal gradient in surface properties results in corresponding latitudinal variations in the energy balance. Thus, changes in the latitudinal variation in surface properties and energy exchanges within the atmospheric boundary layer (ABL) may affect future regional climate across the FTE. The goal of this study was to develop a baseline understanding of the latitudinal variation in surface-atmosphere interactions and atmospheric boundary layer dynamics across the FTE in northwestern Canada. We used paired eddy covariance measurements of surface energy fluxes and supporting environmental measurements at a subarctic woodland (‘woodland’) and a mineral upland tundra site (‘tundra’) to quantify differences in daily and seasonal differences in woodland and tundra properties and energy exchanges. Four bulk surface parameters (albedo, aerodynamic conductance, surface conductance, and decoupling factor) were examined to explain drivers of those differences. Campaign-based radiosonde observations and numerical experiments using an ABL model were used to examine the impacts of a sparse tree cover on ABL dynamics (height, temperature, humidity) and their implications for surface climate compared to treeless tundra. The sparse tree cover at the woodland site showed an enhanced ability to transfer heat into the atmosphere and a higher resistance to evapotranspiration compared to tundra, leading to warmer and drier conditions especially in late winter and spring. In summer and fall, higher bulk surface conductance at the tundra site led to more energy being used to moisten the atmosphere, resulting in a shallower ABL and regional cooling of the atmosphere. Refined characterization of land surface-atmosphere interactions across the FTE will help to project the effect of ongoing vegetation changes on regional climate in the circumpolar Arctic-boreal region.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32208 |
Date | 04 1900 |
Creators | Graveline, Vincent |
Contributors | Sonnentag, Oliver, Helbig, Manuel |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0026 seconds