Le contrôle de l’aimantation sans application de champ magnétique externe est un domaine de recherche en plein essor, étant prometteur pour les applications technologiques d’enregistrement magnétique et de spintronique. En 2007, Stanciu et al. ont découvert la possibilité de retourner l’aimantation dans un film fait d’alliage ferrimagnétique de GdFeCo en utilisant des impulsions laser femtoseconde. Longtemps cantonné aux alliages de GdFeCo, ce retournement tout-optique s’avère un phénomène plus général, puisqu’il a été mesuré plus récemment dans une large variété de matériaux ferrimagnétiques et ferromagnétiques. Cette découverte a ainsi ouvert la voie à l’intégration de l’écriture tout-optique dans l’industrie des mémoires magnétiques. Néanmoins, l’ensemble des modèles théoriques expliquant le retournement tout-optique dans le GdFeCo ne semblent pas s’appliquer aux autres matériaux magnétiques, mettant ainsi en question l’unicité de l’origine microscopique de ce phénomène. Au cours de cette thèse, nous avons étudié la réponse aux impulsions laser femtoseconde des alliages ferrimagnétiques et des multicouches ferromagnétiques, dans l'objectif d'élucider divers aspects du mécanisme du retournement optique. Nous avons élucidé expérimentalement les paramètres magnétiques gouvernant le retournement tout-optique. Nous avons montré que l’observation du retournement tout-optique nécessite des domaines magnétiques plus grands que la taille du faisceau laser pendant le processus de refroidissement, un critère qui est commun à la fois aux matériaux ferrimagnétiques et ferromagnétiques. En outre, nous nous sommes intéressés à l’intégration du retournement tout-optique dans des dispositifs de spintronique. Grâce à une caractérisation temporelle de l’aimantation dans des croix de Hall via l’effet Hall extraordinaire, nous avons distingué entre deux types de mécanismes du retournement optique. Le premier type est un retournement purement thermique obtenu avec une impulsion unique dans les alliages ferrimagnétiques de GdFeCo, tandis que le deuxième type est un retournement cumulative et à deux régimes dans les alliages ferrimagnétiques de TbCo et les multicouches ferromagnétiques de Co/Pt. Ce dernier consiste en une formation indépendante de l’hélicité de multidomaines magnétiques suivie d'une ré-aimantation dépendante de l'hélicité sur plusieurs dizaines de millisecondes. / The control of magnetization without external magnetic fields is an emergent field of research due to the prospect of impacting many technological applications such as magnetic recording and spintronics. In 2007, Stanciu et al. discovered an intriguing new possibility to switch magnetization in a ferrimagnetic GdFeCo alloy film using femtosecond laser pulses. This all-optical switching of magnetization had long been restricted to GdFeCo alloys, though it turned out to be a more general phenomenon for a variety of ferromagnetic and ferromagnetic materials. This discovery paved the way for an integration of the all-optical writing in storage industries. Nevertheless, the theoretical models explaining the switching in GdFeCo alloys films do not appear to apply in the other materials, thus questioning the uniqueness of the microscopic origin of all-optical switching. In this thesis, we have investigated the response of femtosecond laser pulses in ferrimagnetic alloys and ferromagnetic multilayers to the action of femtosecond laser pulses, in order to elucidate several aspects of the all-optical switching mechanism. We have experimentally studied the magnetic parameters governing the all-optical switching. We showed that the observation of all-optical switching requires magnetic domains larger than the laser spot size during the cooling process; such a criterion is common for both ferrimagnets and ferromagnets. Furthermore, we have investigated the integration of all-optical switching in spintronic devices via the anomalous Hall effect. Through a time-dependent electrical investigation of the magnetization in Hall crosses, we distinguished between two types of all-optical switching mechanisms. The first type is the single-pulse helicity-independent switching in ferrimagnetic GdFeCo alloy films as shown in previous studies, whereas the second is a two regimes helicity-dependent switching in both ferrimagnetic TbCo alloys and ferromagnetic Co/Pt multilayers. The latter consists in a step-like helicity-independent multiple-domain formation followed by a helicity-dependent remagnetization on several tens of milliseconds.
Identifer | oai:union.ndltd.org:theses.fr/2016LORR0107 |
Date | 19 September 2016 |
Creators | Hadri, Mohammed Salah El |
Contributors | Université de Lorraine, Mangin, Stéphane, Malinowski, Grégory |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0012 seconds