La simulation d’écoulements incompressibles pose de nombreuses difficultés. Une première est la question de savoir comment traiter la contrainte d’incompressibilité et le couplage vitesse/pression afin d’obtenir une solution précise à moindre coût. Pour cela, nous nous intéressons en particulier à deux méthodes de time splitting : la correction de pression et la correction de vitesse. Une seconde difficulté porte sur des conditions limites de sortie. Nous nous intéressons ici à deux d’entre elles : la condition limite de traction et la condition limite d’Orlanski. Après avoir détaillé les difficultés pouvant apparaître lors de l’implémentation des méthodes de time-splitting, nous proposons une nouvelle implémentation de la condition limite de traction qui permet d’améliorer les ordres de convergence obtenus. Nous nous intéressons ensuite à la condition limite d’Orlanski qui nécessite une certaine vitesse d’advection C dans la direction normale à la limite dont nous proposons ici une nouvelle définition. Nos propositions sont confrontées à de multiples écoulements physiques afin de valider leurs comportements : l’écoulement en aval d’une marche descendante, l’écoulement au niveau d’une bifurcation,l’écoulement autour d’un obstacle et des écoulements de Poiseuille-Rayleigh-Bénard. / One of the understudied difficulties in the simulation of incompressible flows is how to treat the incompressibilityconstraint and the velocity/pressure coupling in order to obtain an accurate solution at low computationnalcost. In this context, we develop two methods: pressure-correction and velocity-correction. An anotherdifficulty is due to the boundary conditions. We study here two of them : the traction boundary condition andthe Orlanski boundary condition. After having developed the difficulties that appears when implementing timesplittingmethods, we propose a new way to enforce the traction boundary condition which improves the orderof convergence. Then we propose a new definition of the advective velocity C which is needed for the Orlanskiboundary condition. Our propositions are validated against multiple physical flows: flow over a backward facingstep, flow around a biffurcation, flow around an obstacle and several Poiseuille-Rayleigh-Bénard flows.
Identifer | oai:union.ndltd.org:theses.fr/2012BOR14656 |
Date | 07 December 2012 |
Creators | Poux, Alexandre |
Contributors | Bordeaux 1, Azaïez, Mejdi, Glockner, Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds