Return to search

Assessment of a Reliable Fractional Anisotropy Cutoff in Tractography of the Corticospinal Tract for Neurosurgical Patients

Background: Tractography has become a standard technique for planning neurosurgical operations in the past decades. This technique relies on diffusion magnetic resonance imaging. The cutoff value for the fractional anisotropy (FA) has an important role in avoiding false-positive and false-negative results. However, there is a wide variation in FA cutoff values. Methods: We analyzed a prospective cohort of 14 patients (six males and eight females, 50.1 ± 4.0 years old) with intracerebral tumors that were mostly gliomas. Magnetic resonance imaging (MRI) was obtained within 7 days before and within 7 days after surgery with T1 and diffusion tensor image (DTI) sequences. We, then, reconstructed the corticospinal tract (CST) in all patients and extracted the FA values within the resulting volume. Results: The mean FA in all CSTs was 0.4406 ± 0.0003 with the fifth percentile at 0.1454. FA values in right-hemispheric CSTs were lower (p < 0.0001). Postoperatively, the FA values were more condensed around their mean (p < 0.0001). The analysis of infiltrated or compressed CSTs revealed a lower fifth percentile (0.1407 ± 0.0109 versus 0.1763 ± 0.0040, p = 0.0036). Conclusion: An FA cutoff value of 0.15 appears to be reasonable for neurosurgical patients and may shorten the tractography workflow. However, infiltrated fiber bundles must trigger vigilance and may require lower cutoffs.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:85082
Date02 May 2023
CreatorsWende, Tim, Kasper, Johannes, Wilhelmy, Florian, Dietel, Eric, Hamerla, Gordian, Scherlach, Cordula, Meixensberger, Jürgen, Fehrenbach, Michael Karl
PublisherMDPI
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation2076-3425, 650

Page generated in 0.0024 seconds