Return to search

Analyse aérothermodynamique de l'entrée atmosphérique d'un géocroiseur à occurrence séculaire.

Quotidiennement, des objets orbitant à proximité de la Terre (ou géocroiseurs) impactent cette dernière. Si pour la grande majorité de ces objets, de petites tailles, les conséquences au sol sont nulles (ablation totale lors de l'entrée) ou minimes, cependant lorsque la dimension de l'objet atteint une taille critique (autour de 50m de diamètre), celles-ci peuvent devenir dramatiques. De plus, ceux-ci ont une occurrence d'impact séculaire, donc à l'échelle d'une vie humaine. L'entrée d'un tel objet met en œuvre un nombre important de phénomènes, dont certains sont peu ou pas connus de manière quantifiable et déterministe : AéroThermoDynamique (ATD) de l'écoulement, rayonnement de la couche de choc, ablation de l'objet, fragmentation, vol en formation. De plus la grande variété de conditions d'entrée étudiées (en termes de vitesses d'entrée, de dimensions, de formes, de masses, de compositions physico-chimiques) nécessite une étude paramétrique. Notre thèse est que la phase de rentrée atmosphérique et les phénomènes s'y déroulant, jouent un rôle fondamental dans la prévision des risques d'impact au sol. Ainsi, nous avons quantifié de manière précise ces phénomènes afin d'en établir leurs conséquences pendant la traversée atmosphérique de l'objet puis au sol : nombre et tailles des fragments, empreinte au sol, vitesse(s) d'impact(s), masse(s) finales(s) et énergie cinétique finales avant impact. Une étude préliminaire a permis de faire une étude bibliographique sur le sujet et de mener des simulations ATD de l'écoulement pour différents rayons, vitesses, altitudes et modélisations physico-chimiques. Il est apparu que l'écoulement post-choc était en équilibre thermochimique et rayonnait de façon très importante. De ce fait, des calculs de rayonnement au niveau de la ligne d'arrêt pour différents rayons de nez, vitesses et altitudes ont été effectués, afin de développer une loi analytique permettant d'estimer correctement le flux radiatif de la couche de choc vers la paroi. Cette étude a mis en défaut la représentativité des formules analytiques pré-existantes pour les dimensions et vitesses considérées ici. Du fait des fortes contraintes thermiques auxquels est soumis un géocroiseur au cours de l'entrée, celui-ci perd de la masse par ablation. Deux modélisations (monodimensionnelle et tridimensionnelle) de ce phénomène ont été réalisées, afin d'en évaluer l'incidence en termes de pertes de masses et changements de forme, et donc les conséquences sur la dynamique de vol de l'objet. Une attention particulière a également été portée au phénomène de fragmentation, de l'initiation de la rupture du fait des contraintes mécaniques à la génération de fragments et à leur dynamique d'évolution ou "vol en formation", et l'influence de ce phénomène sur la dynamique de vol. Cette étude a montré l'importance de ce phénomène sur la prévision d'impact au sol, en particulier sur le nombre de fragments impactant et leur énergie cinétique d'impact. De plus, les interactions entre fragments réduisent la dispersion (ou empreinte) au sol. Enfin des simulations de trajectoires monodimensionnelles et tridimensionnelles avec prise en compte des phénomènes d'ablation et fragmentation ont été effectuées sur trois exemples remarquables d'entrée. Elles ont permis de mettre en évidence l'importance des paramètres d'entrée, en particulier la vitesse et l'incidence, dans l'estimation de l'impact au sol. Elles ont également mis en évidence l'influence généralement protectrice de l'atmosphère dans l'estimation de l'impact au sol, en particulier du fait du phénomène de fragmentation, et dans une moindre mesure d'ablation.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01059229
Date12 June 2012
CreatorsFerrier, L.
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds