Wireless networks collect vast amounts of log data concerning usage of the network. This data aids in informing operational needs related to performance, maintenance, etc., but it is also useful for outside researchers in analyzing network operation and user trends. Releasing such information to these outside researchers poses a threat to privacy of users. The dueling need for utility and privacy must be addressed. This thesis studies the concept of differential privacy for fulfillment of these goals of releasing high utility data to researchers while maintaining user privacy. The focus is specifically on physical user trajectories in authentication manager log data since this is a rich type of data that is useful for trend analysis. Authentication manager log data is produced when devices connect to physical access points (APs) and trajectories are sequences of these spatiotemporal connections from one AP to another for the same device. The fulfillment of this goal is pursued with a variable length n-gram model that creates a synthetic database which can be easily ingested by researchers. We found that there are shortcomings to the algorithm chosen in specific application to the data chosen, but differential privacy itself can still be used to release sanitized datasets while maintaining utility if the data has a low sparsity. / Master of Science / Wireless internet networks store historical logs of user device interaction with it. For example, when a phone or other wireless device connects, data is stored by the Internet Service Provider (ISP) about the device, username, time, and location of connection. A database of this type of data can help researchers analyze user trends in the network, but the data contains personally identifiable information for the users. We propose and analyze an algorithm which can release this data in a high utility manner for the researchers, yet maintain user privacy. This is based on a verifiable approach to privacy called differential privacy. This algorithm is found to provide utility and privacy protection for datasets with many users compared to the size of the network.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/84548 |
Date | 14 August 2018 |
Creators | Stroud, Caleb Zachary |
Contributors | Electrical and Computer Engineering, Tront, Joseph G., Raymond, David Richard, Schaumont, Patrick R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds