Return to search

Impact of the autoencoder-based FINTA tractogram filtering method on brain networks in subjects with Mild Cognitive Impairment / Effekten av autoencoderbaserad FINTA-traktogramfiltrering på hjärnans konnektom hos personer med mild kognitiv nedsättning

Diffusion Magnetic Resonance Imaging (dMRI) is a method for measuring molecular diffusion in biological tissue microstructure. This information can be used to predict the location and orientation of white matter fibers in the brain, a process known as tractography. Analysis of the map of neural connections can provide meaningful information about the severity or progression of neurodegenerative diseases such as Alzheimer's, and allow for early intervention to prevent progression. However, tractography has its pitfalls; current fiber-tracking algorithms suffer from generating false-positive connections and affect the reliability of structural connectivity maps. To counter this downside, tractogram filtering methods have been created to remove inaccurately predicted connections. This study aims at evaluating the impact of the novel semi-supervised filtering method FINTA on the brain networks of people with Mild Cognitive Impairment (MCI), which precedes diseases like Alzheimer's. The proposed experiments use the Nipype Neuroimaging Python library for the automation of the entire process. Registration, parcellation, and tracking were performed using MRtrix and FSL. Furthermore, DIPY and NiBabel were used for tractogram processing. Finally, filtering was performed based on code provided by the authors of FINTA, and graph measures were computed using the NetworkX Python library. Experiments were performed on both raw and weighted structural connectivity matrices. Results suggest that filtering has an effect on graph measures such as the clustering coefficient and betweenness centrality for different nodes corresponding to brain regions. / Diffusion magnetisk resonanstomografi (diffusions MRT) är en metod för att mäta den molekylära diffusionen i mikrostrukturen i biologisk vävnad. Denna information kan användas för att förutsäga var fibrerna i den vita substansen i hjärnan befinner sig och hur de är orienterade i den process som kallas traktografi. Analys av kartan över nervförbindelser kan ge meningsfull information om svårighetsgraden eller utvecklingen av neurodegenerativa sjukdomar som Alzheimers och möjliggöra tidiga insatser för att förhindra utvecklingen. Traktografi har dock sina fallgropar och nuvarande algoritmer för fiberspårning lider av att generera falska positiva anslutningar och påverkar de strukturella konnektivitetskartorna som förhindrar tillförlitliga förutsägelser. För att motverka denna nackdel har filtreringsmetoder för traktogram skapats för att ta bort de felaktigt förutsagda anslutningarna.  Denna studie syftar till att utvärdera effekterna av den nya semi-övervakade filtreringsmetoden FINTA på hjärnnätverk hos personer med lindrig kognitiv störning (eng. mild cognitive impairment, MCI) som föregår sjukdomar som Alzheimers. I de föreslagna experimenten används Python-biblioteket Nipype Neuroimaging för automatisering av hela processen. Registrering, parcellering och spårning gjordes med hjälp av MRtrix och FSL, dessutom användes DIPY och NiBabel för traktogrambehandling. Slutligen utfördes filtrering baserat på kod från författarna till FINTA och grafmått beräknades med hjälp av NetworkX Python-bibliotek. Experimenten utfördes på råa och viktade strukturella konnektivitetsmatriser. Resultaten tyder på att filtrering har en effekt på grafmått som klustringskoefficient och betweenness centrality för olika noder som motsvarar hjärnregioner.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-337041
Date January 2023
CreatorsPstrusiński, Teodor
PublisherKTH, Skolan för kemi, bioteknologi och hälsa (CBH)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2023:062

Page generated in 0.0019 seconds