Return to search

Identification and Characterization of Novel Proteins and Pathways for mRNA Degradation and Quality Control in Saccharomyces Cerevisiae

In eukaryotes, mRNA decay pathways are important for cellular response to various physiological conditions and also function in co-translational quality control systems that target translationally aberrant mRNAs for degradation. My work on identification and characterization of novel components and pathways of mRNA degradation and quality control in Saccharomyces cerevisiae is summarized below.I have identified Edc3p as a novel protein important for mRNA decay. Deletion of Edc3p leads to a defect in mRNA decay in strains deficient in decapping enzymes and, in combination with a block to the 3' to 5' decay pathway, causes exaggerated growth defects and synthetic lethality. An Edc3p-GFP fusion protein localizes in processing bodies, which are specialized cytoplasmic foci containing decapping proteins. Together, these observations indicate that Edc3p directly interacts with the decapping complex to stimulate the mRNA decapping rate.Quality control during mRNA translation is critical for regulation of gene expression. My work shows that yeast mRNAs with defects in translation elongation, due to strong translational pauses, are recognized and targeted for degradation via an endonucleolytic cleavage in a novel process referred to as No-Go Decay (NGD). The cellular mRNA decay machinery degrades the 5' and 3' cleavage products produced by NGD. NGD is translation-dependent, occurs in a range of mRNAs and can be induced by a variety of elongation pauses. These results indicate NGD may occur at some rate in response to any stalled ribosome.I also show that two highly conserved proteins, Dom34p and Hbs1p, homologous to the eukaryotic release factors eRF1 and eRF3 respectively, are required for NGD. Further characterization of the No-Go decay pathway indicates that Dom34p function during NGD is conserved across species. Identification of RPS30, a small ribosomal protein as a trans-acting factor during NGD suggests that the ribosome may have a novel role during NGD. Other experiments indicate that the No-Go decay pathway may cross talk with the unfolded protein response pathway. The identification of No-Go decay as a novel quality control pathway during translation elongation supports the existence of a global cellular mechanism for maintenance of translational quality control.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195676
Date January 2006
CreatorsDoma, Meenakshi Kshirsagar
ContributorsParker, Roy R., Parker, Roy R., Dieckman, Carol, Ward, Sam, Weinert, Ted, Bosco, Gio
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0022 seconds