As várias possibilidades de aplicações tecnológicas que o diamante permite, na indústria de dispositivos, impulsionaram os avanços de fabricação de amostras de diamante sintético de alta qualidade. O cristal de diamante crescido, do grafite, pela técnica de alta pressão e alta temperatura (HPHT - High Pressure-High Temperature), utiliza ligas de metais de transição como solvente-catalizadores, que produzem contaminação das amostras. Dentre as várias impurezas de metal de transição introduzidas no material resultante, as impurezas de níquel são as mais bem caracterizadas, pois os centros relacionados ao Ni apresentam características únicas nestas amostras sintéticas. Apesar das ligas de cobalto serem as mais utilizadas como solvente-catalizador no crescimento de diamante sintético, defeitos relacionados a sua presença, no material resultante, não têm sido identificados com a mesma facilidade como aqueles relacionados aos do níquel. Medidas de absorção óptica e de ressonância paramagnética eletrônica têm identificado vários centros relacionados com a impureza de níquel e alguns centros relacionados com a impureza de cobalto em diamante, tanto isolados como formando complexos, que envolvem defeitos intrínsecos e/ou dopantes. Entretanto, existem ainda muitas dúvidas e controvérsias sobre a estrutura microscópica destes centros. / High quality synthetic diamond, growth out of graphite, has been achieved by the high pressure-high temperature (HPHT) methods. In order to speed up the process and allow to get macroscopic samples, 3d-transition metal alloys have been used as solvent-catalysts. Those transition metals (TM) end up contaminating the samples, generating electrically and optically active centers. Nickel was the first transition metal impurity unambiguously identified in synthetic diamond, ever since, several nickel-related active centers have been observed. Although cobalt has been the most widely used solvent-catalyst to grow diamond, cobalt-related defects could not be identified as easily as the nickel-related ones. Electron paramagnetic resonance (EPR) and optical absorption measurements have identified several Ni-related centers and some Co-related centers in diamond, mostly isolated TM and TM-related complexes involving intrinsic defects and/or dopants. However, there is considerable controversy about the microscopic structure of those centers. We present a theoretical investigation on the structural and electronic properties of nickel and cobalt impurities in diamond. The atomic structures, symmetries, formation and transition energies, and hyperfine parameters of isolated interstitial and substitutional Ni and Co, as well as of the Ni-divacancy, Co-divacancy, Co-divacancy-nitrogen, Ni-B, and Ni-N complexes were computed by using ab initio total energy methods. Here we used the spin-polarized full-potential linearized augmented plane wave (FPLAPW) method. The calculations were performed within the framework of the density functional theory and considered the supercell approach. Our results are discussed in the context of the microscopic models which have been proposed to explain the active centers identified in synthetic diamond. Based on our results, we confirm some microscopic models and we ultimately propose new ones which unifies several experimentally identified impurities.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25032009-135707 |
Date | 12 December 2008 |
Creators | Larico, Rolando |
Contributors | Assali, Lucy Vitoria Credidio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds