Return to search

Mathematical modeling of molecular motors

Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance,
the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transport molecules and derive properties like the maximal run length and time. Furthermore we introduce permuted balance, which is a more flexible extension of the ordinary reversibility and introduce the notion of Time Duality, which compares certain passage times pathwise. We give a number of sufficient conditions for Time Duality based on the geometry of the transition graph. Both notions are closely related to properties of the killed Quasi-Random-Walk.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6304
Date January 2013
CreatorsKeller, Peter
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePreprint
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0018 seconds