The development of plant flowers represents a complex process controlled by numerous mechanisms. The creation of double homozygous mutant of both β subunits (sometimes also referred to as basic transcription factor 3) of nascent polypeptide associated complex in Arabidopsis thaliana (further referred to as nacβ1 nacβ2) caused quite a strong defective phenotype including abnormal number of flower organs, shorter siliques with a reduced seed set, and inferior pollen germination rate together with a lower ovule targeting efficiency. Previously, NAC complex was described to be formed as a heterodimer composed of an α- and β-subunit, which binds ribosome and acts as a chaperone in Saccharomyces cerevisiae. In plants, NACβ is connected to stress tolerance and to plant development as a transcription regulator. However, little is known of NAC heterodimer function in plants. In this thesis, yeast two hybrid system (Y2H) and bimolecular fluorescence complementation (BiFC) assays were used to verify the NAC heterodimer formation in A. thaliana and to establish any potential interaction preferences between both NACβ paralogues and five NACα paralogues. To deepen the understanding about molecular mechanisms behind the nacβ1 nacβ2 phenotype, flower bud transcriptome of the nacβ1 nacβ2 double homozygous mutants...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:405573 |
Date | January 2019 |
Creators | Klodová, Božena |
Contributors | Fíla, Jan, Robert Boisivon, Helene |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds