Das Kerngenom pathogener Escherichia coli Isolate wird von zahlreichen variablen Regionen unterbrochen, die meist durch horizontalen Gentransfer erworben wurden und über das ganze Chromosom verteilt sind. Diese variablen Bereiche tragen häufig Gene für Virulenz- und Fitnessfaktoren und sind oftmals nur instabil in das Chromosom integriert. Um die Verbreitung variabler Bereiche, die insbesondere Virulenzfaktoren kodieren, innerhalb verschiedener klinischer Isolate näher untersuchen zu können, wurde im Rahmen dieser Arbeit ein spezieller DNA-Array entwickelt. Dieser enthielt zahlreiche Sonden für Gene, die für die Virulenz von verschiedenen Erregern der Gattung E. coli als auch der Untergruppe Shigella charakteristisch sind. Mit diesem "Pathoarray" wurde die Verbreitung von Virulenzgenen in unterschiedlichen E. coli Isolaten untersucht. Zusätzlich wurden Unterschiede im Kerngenom mit Hilfe eines kommerziell erwerbbaren DNA-Arrays bestimmt. Ein Vergleich des Kerngenoms von uropathogenen Stämmen mit Derivaten, bei denen Pathogenitätsinseln deletiert sind, bestätigte die Auffassung, dass der Deletion von Pathogenitätsinseln ein spezieller Mechanismus zu Grunde liegt, von dem das Kerngenom nicht betroffen ist. Das Kerngenom der untersuchten Stämme war prinzipiell sehr konserviert und unterschied sich lediglich durch wenige Gene aus Bakteriophagen. Die größten Unterschiede wurden bei Genen beobachtet, die zum variablen Teil des Genoms gehören und charakteristisch für das jeweilige Isolat waren. Mit Hilfe der DNA-Array Technologie lassen sich auch Änderungen von Expressionsprofilen studieren, die von Mutationen oder durch Umwelteinflüsse bedingt werden. Im zweiten Teil dieser Arbeit wurde durch Transkriptomanalysen das RfaH-abhängige Regulon untersucht, insbesondere im Hinblick auf solche Gene, die die Biofilmbildung beeinflussen. Beim Vergleich der Transkriptome von E. coli 536rfaH mit dem Wildtyp wurde eine signifikant erhöhte Expression von Antigen 43 festgestellt. Im E. coli K-12 Stammhintergrund konnte dieses Oberflächenprotein als Hauptfaktor für die RfaH-abhängige Biofilmbildung identifiziert werden. Das verkürzte LPS-Kernoligosaccharid im Stamm MG1655rfaH hatte ebenfalls einen großen Einfluss auf die verstärkte Biofilmbildung. Vermutlich verstärkte die verbesserte Präsentation von Agn43 durch ein verkürztes LPS die Biofilmbildung signifikant. Andere Oberflächenstrukturen, wie die Colansäure-Kapsel, zeigten keinen Effekt auf die Biofilmbildung von E. coli MG1655rfaH. Neben den Expressionsprofilen der Stämme 536 und 536rfaH bei 37 Grad C wurden auch die Expressionsprofile bei 30 Grad C sowie von Biofilmen analysiert. Prinzipiell konnten bei allen untersuchten Wachstumsbedingungen nur geringe Unterschiede zwischen 536 und 536rfaH festgestellt werden. Beim Vergleich der unterschiedlichen Wachstumsbedingungen (Temperatureffekt und planktonische Zellen vs. Biofilm) wurden jedoch deutliche Unterschiede beobachtet. Sowohl Gene des Kerngenoms als auch Gene von Pathogenitätsinseln waren temperaturabhängig reguliert. Bei E. coli Isolaten lassen sich neben genomischen Unterschieden auch phänotypische Unterschiede beobachten. Es wurde festgestellt, dass die Biofilmbildung von E. coli Isolaten abhängig von verschiedenen Faktoren und molekularen Mechanismen ist. Zudem konnte dargelegt werden, wie Unterschiede in der Zusammensetzung der äußeren Membran durch eine veränderte LPS-Struktur und die Expression von Adhäsinen die Biofilmbildung beeinflussen können. / Evolutionary adaptation is the driving force for the variability observed within genomes of all different Escherichia coli pathotypes. Beside the core genome, shared by all strains, also variable regions, which can be strain-specific, are scattered on the chromosome. These flexible regions mostly encode virulence factors as well as other fitness factors and are acquired through horizontal gene transfer but are also characterised by their instability. To shed a closer light on the distribution of these virulence factors among different clinical isolates, DNA-arrays were used for genome comparisons. One aim of this Ph.D. thesis was the design of a DNA-array with specific probes for typical virulence-related genes of pathogenic E. coli. With this tool in hand, the distribution of virulence genes among several E. coli isolates was analysed. In addition to virulence related genes, also differences in the core genome of well-known uropathogenic isolates of E. coli were detected using DNA-array technology. Furthermore, the core genome of different wildtype strains was compared with derivatives shown to have lost pathogenicity islands. The results confirmed the assumption that PAI deletion from core genome is a specific process and underlies a specific mechanism. The core genome itself was very conserved and the observed small differences related to genes derived from different bacteriophages. The majority of differences were detected for the flexible regions, which differ in a strain-specific manner. DNA-array technology is also a versatile tool to gain insights in changes of gene expression levels caused by gene function disorders or environmental differences. The expression profiling approach using DNA-arrays was employed in the second part of this thesis. In this work, the RfaH-related regulon was studied by transcriptome analysis. Besides the already known effect of RfaH on facilitated capsule, LPS and alpha-haemolysin expression, the focus was set on genes involved in biofilm formation. Comparison of the 536rfaH and the wildtype strain transcriptomes revealed a significant upregulation of agn43 transcript levels. In order to study the underlying mechanisms of RfaH-dependent increased biofilm formation, selected mutants of E. coli K-12 and 536 were generated and tested for their biofilm forming capacities. In MG1655rfaH we could show that Agn43 is the major factor leading to biofilm formation. In addition, this phenotype was dependent on the LPS core truncation coming along within rfaH deficient strains. In conclusion, these results demonstrated that the LPS core truncation leads to unshielding of Agn43 in this strain, thus supporting autoaggregation and biofilm formation. Other surface structures like colanic acid had no influence on this effect. Besides the expression profiles of strains E. coli 536 and 536rfaH at 37 degrees, also expression profiles at 30 degrees and in biofilms were analysed. Typical differences in either stage were characterised. In general, when comparing the expression profiles from wildtype and mutant the changes observed were very small. However, the influence of temperature and also the mode of growth (planktonic cells vs. biofilm) affected the expression profiles in both strains more severely. In conclusion, E. coli strains not only differ in their genotypes, moreover complex phenotypic differences are observable. The obtained phenotypic differences in biofilm formation were shown to be multifactorial. The phenotype was attributed to variances in the composition of the outer membrane. In this context, the influence of LPS structures and adhesin expression was pointed out.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:1515 |
Date | January 2005 |
Creators | Michaelis, Kai |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds