Le système de sécrétion de type II (T2SS) est largement répandu chez les bactéries à Gram négatif et est, entre autre, exploité par de nombreux pathogènes pour sécréter des facteurs de virulence dans le milieu extérieur. Le T2SS est constitué de 12 à 15 protéines différentes s’associant en une machinerie complexe qui traverse la totalité de l’enveloppe bactérienne. Ce système assure la sécrétion de protéines repliées du périplasme au milieu extracellulaire. Le mode de fonctionnement de cette machinerie n’est toujours pas connu. Pour comprendre les mécanismes moléculaires régissant la sécrétion des protéines par le T2SS, nous avons utilisé comme modèle le T2SS de la bactérie phytopathogène Dickeya dadantii, nommé Out, qui assure la sécrétion de pectinases entrainant la pourriture molle chez de nombreux végétaux. Nous avons employé des approches de pontage disulfure, double hybride bactérien et GST-pull down afin d’étudier l’arrangement et l’organisation des composants au sein du système de sécrétion. Nous avons ainsi montré que les composants de la membrane interne et la sécrétine de la membrane externe se coordonnent entre eux grâce à un réseau d’interactions complexe et dynamique qui peut être modifié par la présence d’une protéine à sécréter. En combinant des approches génétiques, biochimiques, structurales et bioinformatiques, nous avons étudié le mécanisme de reconnaissance de la pectinase PelI, par deux composants majeurs du système, la protéine de membrane interne OutC et la sécrétine OutD qui forme le pore du T2SS dans la membrane externe. Nous avons montré que PelI interagit avec les domaines périplasmiques HR et PDZ d’OutC et N0 et N1 d’OutD. La présence de N1 renforce l’interaction PDZ/PelI suggérant que le processus de sécrétion pourrait être régi par une succession de contacts synergiques. PDZOutC reconnait une boucle de 9 résidus au sein de l’exoprotéine PelI. Cette boucle constitue un motif d’adressage spécifique contrôlant le recrutement de PelI par la machinerie de sécrétion Out. Des études in silico et in vivo ont montré l’existence de régions similaires à cette boucle au sein d’autres pectinases sécrétées par D. dadantii. Par ailleurs, l’interaction N1OutD/PelI impliquerait un contact de brins β ainsi que la région non structurée située en amont de N1. Ces travaux constituent la première démonstration expérimentale du rôle de signal de sécrétion d’un élément structural précis d’une exoprotéine sécrétée par un T2SS. Ils ont également permis pour la première fois de caractériser des sites précis d’interactions entre une protéine sécrétée et des composants du T2SS. Cette étude constitue une avancée majeure dans la compréhension des mécanismes moléculaires qui gouvernent le recrutement et la sécrétion des protéines par le système de type II. / The type II secretion system (T2SS) is widespread in Gram-negative bacteria. It is notably exploited by various pathogenic bacteria to secrete virulence factors into the extracellular milieu and host tissues. The T2SS is composed of 12 to 15 proteins that assemble together into a complex machine that spans the bacterial envelope. It allows the translocation of fully folded proteins from the periplasm across the outer membrane. The exact mode of action of this sophisticated machine is still unknown. The phytopathogenic bacterium Dickeya dadantii uses a T2SS, named Out, to secrete several plant cell-wall degrading enzymes that cause the soft rot disease of many plants. We used the Out system of this bacterium as a model to study the molecular mechanism of protein secretion by T2SS. In order to study the mutual arrangement of the different components of this machinery, we used disulfide bonding, bacterial two hybrid and GST-pull down. We showed that the components of the inner membrane platform interact together and we characterized several interfaces between the inner membrane component OutC and the outer membrane secretin OutD. These various contacts create a complex and dynamic network within the secretion machine that can be modulated by the presence of a protein to be secreted. Subsequently, we combined genetic, biochemical, structural and bioinformatics approaches to study how the pectinase PelI is recognized by the inner membrane component OutC and the pore-forming secretin OutD. We showed that PelI interacts with the periplasmic domains HR and PDZ of OutC and N0 and N1 of OutD. The presence of N1OutD positively modulates the PDZ/PelI interaction, suggesting that protein progression through the T2SS could involve a succession of synergistic contacts. The OutC PDZ domain recognizes a short loop of PelI. This loop acts as a specific secretion signal that controls exoprotein recruitment by the T2SS. Concerted in silico and in vivo approaches suggest the occurrence of equivalent secretion motifs in other exoproteins. The interaction between PelI and OutD could involve a β-strand contact and an intrinsically disordered region located upstream of N1. This work provides the first experimental evidence of molecular mechanisms that govern exoprotein recruitment by the T2SS. Notably, we identified a short structural element acting as a secretion signal and characterized for the first time the interfaces between the T2SS components and a protein to be secreted. This study provides important new mechanistic insights to understand the functioning of this secretion machine.
Identifer | oai:union.ndltd.org:theses.fr/2014ISAL0041 |
Date | 29 April 2014 |
Creators | Pineau, Camille |
Contributors | Lyon, INSA, Shevchik, Vladimir |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds