This thesis presents work based on the interactions of water soluble caboxylated zinc phthalocyanines (Pcs) and coreshell quantum dots (QDs). The Pcs are ZnPc(COOH)₈ and ZnPc(COOH)₄ and coreshell QDs are CdTe@ZnS-GSH. GSH = L-glutathione. Characterization and photophysical studies of conjugates were carried out. The approach of coordinating Pcs to QDs was achieved using an organic cross linker, N-N’-dicyclohexylcarbodiimide (DCC) at pH 10 at room temperature. Employing atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, infrared and X-ray photoelectron spectroscopies, the formation of the conjugates was confirmed. Upon conjugation with Pc derivatives, the fluorescence quantum yield of CdTe@ZnS-GSH decreased due to energy transfer from the QDs to the Pc. The average fluorescence lifetime of the CdTe@ZnS-GSH QD also decreased upon conjugation. The föster resonance energy transfer (FRET) behaviour of CdTe@ZnS-GSH-ZnPc(COOH)₄ conjugates was compared to that of CdTe@ZnS-GSH-ZnPc(COOH)₈. Higher FRET efficiencies were observed for CdTe@ZnS-GSH-ZnPc(COOH)₄-mixed or CdTe@ZnS-GSH-ZnPc(COOH)₄-linked compared to the corresponding CdTe@ZnS-GSH-ZnPc(COOH)₈-mixed or CdTe@ZnS-GSH-ZnPc(COOH)₈-linked. Triplet quantum yield (ΦT) and lifetime (ΤT) of ZnPc(COOH)₈ were found to increase in the presence of coreshell QDs. Though the singlet quantum yield (ΦΔ) value of ZnPc(COOH)8 was lower than ΦT , there was a slight upsurge in the ΦT in the presence of QDs. / Microsoft� Word 2010 / Adobe Acrobat 9.53 Paper Capture Plug-in
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4276 |
Date | 27 March 2013 |
Creators | Sekhosana, Kutloano Edward |
Publisher | Rhodes University, Faculty of Science, Chemistry |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc |
Format | 114 p., pdf |
Rights | Sekhosana, Kutloano Edward |
Page generated in 0.0019 seconds