Return to search

Self-assembly, luminescence properties and excited state interactions of block copolymers that contain ruthenium tris(bipyridine)

This thesis describes the examination of novel block copolymers that contain Ru(bpy)32+ complexes incorporated into one block of diblock copolymers made by ROMP. With the intent of exploring the potential usefulness of these interesting materials in applications such as light-harvesting and sensing, a systematic study of the solution self-assembly, luminescence properties, and the ability of the metal complex to engage in electron and energy transfer reactions has been conducted. / The solution self-assembly of block copolymers that contain Ru(bpy) 32+ complexes was examined first. Using a series of these block copolymers, a detailed study of the effects of block length, block ratio, polymer concentration and solution conditions on the copolymer self-assembly is presented. Using TEM, a number of morphologies were reproducibly observed including star micelles, large compound micelles, tubules, and interestingly, vesicles. These structures all contain the metal complex Ru(bpy)3 2+ within their core domains. / The luminescence properties of two block copolymers containing Ru(bpy) 32+ were examined: one polymer self-assembled into star micelles, the other into vesicles. Comparison of the unassembled polymer chains and the self-assembled polymers indicated that self-assembly, and confinement of the Ru(bpy)32+ complexes into the core domains of the aggregates, did not seriously adversely affect the luminescence properties of the metal complex. Measurement of the luminescence lifetime decay of the polymers suggested that energy migration occurred among the metal complexes along the polymer chain. The ability of the metal complexes within self-assembled structures to participate in electron transfer reactions with small molecules was also explored. It was found that from within the core domains of self-assembled structures, the Ru(bpy)32+ complexes could still engage in electron transfer reactions with molecules on the outsides or the insides of the aggregates, likely a result of energy migration. / The ability of Ru(bpy)32+ complexes within the cores of micelles to participate in energy transfer was explored. Micelles were formed in aqueous solutions using polymers that possessed both the metal complex and a water-soluble block. Several methods were attempted to encapsulate two molecules, a derivative of coumarin 2 and an Os(bpy)3 2+-based molecule, inside these micelles. It was observed that Ru(bpy) 32+ could act as an energy acceptor from the coumarin derivative, and could act as an energy donor to the osmium-based complex. Encapsulation of the small molecules greatly enhanced the efficiency of energy transfer, by non-covalently bringing the small molecules in close proximity to the Ru(bpy)32+ complexes. / Polymers were synthesized that contained a Ru(bpy)3 2+-based block and were terminated with the molecular recognition unit biotin. These polymers, upon self-assembly, formed micelles with biotin groups on their periphery. The addition of the protein streptavidin, which has a strong binding affinity for biotin, resulted in the aggregation of the self-assembled structures. This established the potential for self-assembled metal-containing aggregates to form higher-order structures. / Early work is presented in Appendix A involving block copolymers that contain hydrogen-bonding groups. Several methods were attempted to elucidate the solution morphologies of these polymers, namely IR, 1H NMR, DLS, and pyrene fluorescence. The transition of this initial work to polymers that contain the Ru(bpy)32+ complex is also described.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.111909
Date January 2008
CreatorsMetera, Kimberly Lorrainne, 1976-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 003135249, proquestno: AAINR66567, Theses scanned by UMI/ProQuest.

Page generated in 0.0025 seconds