Return to search

The study of organic solar cell featuring hole transporting layer with rubbing process

In organic solar cell, the surface characteristic plays an important role in the power conversion efficiency of solar cell device. According to the literatures, the increased roughness can increase the contact area at the interface between PEDOT:PSS and active layer, improving hole extraction to the anode. Furthermore, a rough interface may cause a scattering effect on the incident light, which can reflect the out-lost-light back into the active layer and leads an efficient light absorbed. There are many ways to change the morphology of hole transporting layer, such as solvent-treated, or additives adding. However, the above process methods are easily affected by the external environmental conditions. It¡¦s difficult to get the surface morphology been well controlled, resulting in a process instability and low reproducibility.
In this research, we will create regular grooves on hole transporting layer by rubbing method. By changing baking temperature and rubbing pressure adjustment of PEDOT:PSS layer; we can precisely control the groove depth and surface morphology. This method makes the process simple and high stability. We found that the PEDOT:PSS hole transporting layer with a suitable depth grooves can enhance the power conversion efficiency. The power conversion efficiency of samples were measured under AM 1.5G 100mW/cm2 illumination. In our results, we found that the device possess about 14.52nm-depth of groove structure, the power conversion efficiency of devices can be increased from 2.03% to 2.36% (which is 17.6% improved). This consequence can be attributed to a short current density increasing from 5.67mA/cm2 to 6.67mA/cm2 based on the device structure is ITO(1500Å)/Rubbing-PEDOT:PSS(500Å)/P3HT:PCBM(800Å)/Al(2000Å).

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0824111-120559
Date24 August 2011
CreatorsChen, Yu-Jyun
ContributorsChih-Chien Lee, Mei-Ying Chang, Ping-Tsung Huang, Ko-Shan Ho, Yu-Kai Han
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0824111-120559
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0016 seconds