Return to search

Transportation system selection in open-pit mines (Truck-Shovel and IPCC systems) based on the technical, economic, environmental, safety, and social (TEcESaS) indexes

The production of raw materials through mining projects is nowadays very challenging, mainly due to the rapid progress in the industrial and technological fields. On the one hand, they have to fulfill industries' requirements in their demand for materials while making a profit based on the current technologies. On the other hand, they should consider all other limitations, primarily environmental and social challenges that are confronting. The transportation system in any mining project is one of the most significant parts, especially in the technical and economic issues. It must transfer the planned volume of ore/waste that the whole stream of the mining process would not be interrupted and, it can cover the technical challenges and the costs imposed on the project. Additionally, it should be designed and selected to have the lowest environmental impact and the highest safety during the operation. Accordingly, a transportation system selection process that considers all these factors is one of the challenging issues in any mining project. Although the Truck-Shovel system is known as the conventional transportation in open-pit mines, which is preferable because of the low capital cost and high flexibility, it still imposes a high rate of operating costs, safety issues as well as environmental footprints. In-Pit Crushing and Conveying (IPCC) systems are the alternative transportation systems for the Truck-Shovel systems, in which the material is crushed inside the mine’s pit limit and transferred into the outside through conveyor belts. Although these systems are not new, they are mostly neglected as a transportation option basically due to the high capital cost and low flexibility. On the contrary, they can offer more environmentally friendly and safer working areas and a lower operating cost. According to these facts, each transportation system is preferable in a couple of technical, economic, environmental, safety, and social issues. Accordingly, in each circumstance, one or more of these systems can be used in the mining project. However, there is not yet a way or tool that investigates the transportation system selection along with the mine life that takes into account all of these factors.
To fill this gap, this project aims to define a model to introduce all these elements while it is interactively connected throughout the mine life. For this and as the first step, the system dynamics modeling is defined and used to build the model for all the technical, economic, environmental, safety, and social factors. As an output of this step, software entitled “TEcESaS Indexes” is designed and produced through Venapp that makes working with the model comfortable. As the second step, a selection method based on the Analytical Hierarchy Process (AHP) is performed that the transportation system selection regarding all the mentioned factors can be made. As the output in this step, the “Sustainability Index” software programmed in the Java language is developed. Considering a hypothetical copper open-pit mine as the case study and implementing the designed software, the results show although the Truck-Shovel system should be used in the first two years of the project (2016 and 2017) in the single expert and deterministic mode, the Fully Mobile In-Pit Crushing and Conveying (FMIPCC) system shows the highest sustainability index among other transportation systems from 2018 until the end of the mine life. While in the group decision making and deterministic simulation, the Truck-Shovel system should be utilized from 2016 to 2020. Additionally, in the group decision making and stochastic mode, the FMIPCC is the selected transportation system with the highest sustainability index probability.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:73300
Date12 January 2021
CreatorsAbbaspour, Hossein
ContributorsDrebenstedt, Carsten, Knights, Peter, Osanloo, Morteza, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds