Die Gentherapie hämatopoetischer Stammzellen (HSCs) besitzt das Potenzial, verschiedene erbliche, nur symptomatisch behandelbare, Erkrankungen dauerhaft zu heilen. Die Mehrheit der aktuell angewandten Verfahren dazu, basiert auf der Isolation von hämatopoetischen Stammzellen, der ex vivo Modifikation dieser Zellen durch retrovirale Vektoren und der Reinfusion der modifizierten Zellen in den immunsupprimierten Patienten. Dieser Ansatz ist mit einer Reihe von Nachteilen verbunden, unter anderem einem teilweisen Verlust des Rekonstitutionsvermögens der Stammzellen nach ex vivo Kultur oder der Gefahr der Transformation durch Integration des retroviralen Vektorgenoms. Darüber hinaus sind aktuelle Gentherapieansätze mit hohen Kosten und großem logistischem Aufwand verbunden, was den Zugang zu diesen Behandlungen für potentielle Patienten stark einschränkt. Die vorliegende Arbeit verfolgt einen neuen Ansatz zur Gentherapie von HSCs, der auf der Mobilisierung von Stammzellen aus dem Knochenmark in den peripheren Blutstrom und der Transduktion dieser Stammzellen mit adenoviralen Vektoren basiert. Hierbei codieren die Vektoren sowohl ein Transgen als auch eine Integrationsmaschinerie. Der erste Teil der Arbeit belegt in einem humanen CD46-transgenen Mausmodell, dass adenovirale Vektoren der ersten Generation in der Lage sind, mobilisierte HSCs im Blut zu transduzieren und dass es den so transduzierten Stammzellen möglich ist, zurück ins Knochenmark zu migrieren und dort das Transgen zu exprimieren. Allerdings wurde im Verlauf von zwei Wochen ein Rückgang der Transgenexpression beobachtet. Um dies zu umgehen, wurde ein adenovirales Vektorsystem der dritten Generation genutzt, das eine hochaktive Sleeping Beauty Transposase, zum Zweck der Transgenintegration, codiert. Dieses System ermöglichte die stabile Genmodifikation mobilisierter hämatopoetischer Stammzellen nach intravenöser Injektion. Die Expression des Transgens konnte über längere Zeitspannen (bis 12 Wochen) beobachtet werden. Die modifizeirten Stammzellen waren darüber hinaus in der Lage, genmodifizierte Kolonien in vitro zu bilden und das hämatopoetische System letal bestrahlter Mäuse nach Knochenmarkstransplantation zu rekonstituieren. Es wurde somit gezeigt, dass HSCs nach in vivo Modifikation weiterhin funktional waren. / The gene therapy of hematopoietic stem cells holds the potential for curative treatment of several otherwise incurable inherited diseases. The majority of current gene therapy treatments relies on the collection of hematopoietic stem cells, their ex vivo modification with retroviral vectors and their transplantation into a myeloconditioned patient. This approach entails several disadvantages, including a reduction of stem cell engraftment potential after ex vivo culture and the potential danger of integrational mutagenesis. In addition, the high costs and complex logistics of this approach limit the access of patients to gene therapeutic regimens. This work explores an alternative approach to hematopoietic stem cell (HSC) gene therapy, termed stem cell in vivo transduction. This approach is based on the mobilization of HSCs from the bone marrow into the peripheral blood and the transduction of the stem cells with adenoviral vectors delivering a transgene as well as a transgene integration machinery. In the first part of this work, it was shown that first-generation adenoviral vectors could be used for the transduction of mobilized HSCs in the periphery of human CD46-transgenic mice. Further, the transduced HSCs were able to home back to the bone marrow and express the transgene. However, over the course of 14 days, a loss of transgene expression in HSCs was observed. To ameliorate these shortcomings, helper-dependent adenoviral vectors encoding a hyperactive Sleeping Beauty transposase for transgene integration were used for stable gene modification of hematopoietic stem cells following intravenous vector administration in mobilized human CD46-transgenic mice. Using this improved vector platform, gene marking of bone marrow HSCs could be observed for extended periods of time (up to 12 weeks). Further, the functionality of the modified HSCs was demonstrated both in colony-forming progenitor assays as well as through the transplantation of gene-modified HSCs into lethally irradiated recipients. Transplantation of modified HSCsled to long-term multi-lineage reconstitution showing that gene-modified stem cells were fully functional. Subsequently the safety of systemic vector administration in mobilized hosts as well as of the Sleeping Beauty-mediated transgene integration was assessed in human CD46- transgenic mice. Lastly, the stem cell in vivo transduction approach was employed in NOG mice transplanted with human CD34+ cells, as well as in Macaca nemestrina non-human primates.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/19086 |
Date | 27 September 2017 |
Creators | Richter, Maximilian |
Contributors | Uckert, Wolfgang, Lieber, André, Volk, Hans-Dieter |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung-NichtKommerziell-KeineBearbeitung 3.0 Deutschland, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0026 seconds