Trapped atomic ions are one of the most promising systems for building a quantum computer -- all of the fundamental operations needed to build a quantum computer have been demonstrated in such systems. The challenge now is to understand and reduce the operation errors to below the 'fault-tolerant threshold' (the level below which quantum error correction works), and to scale up the current few-qubit experiments to many qubits. This thesis describes experimental work concentrated primarily on the first of these challenges. We demonstrate high-fidelity single-qubit and two-qubit (entangling) gates with errors at or below the fault-tolerant threshold. We also implement an entangling gate between two different species of ions, a tool which may be useful for certain scalable architectures. We study the speed/fidelity trade-off for a two-qubit phase gate implemented in <sup>43</sup>Ca<sup>+</sup> hyperfine trapped-ion qubits. We develop an error model which describes the fundamental and technical imperfections / limitations that contribute to the measured gate error. We characterize and minimise various error sources contributing to the measured fidelity, allowing us to account for errors due to the single-qubit operations and state readout (each at the 0.1% level), and to identify the leading sources of error in the two-qubit entangling operation. We achieve gate fidelities ranging between 97.1(2)% (for a gate time t<sub>g</sub> = 3.8 μs) and 99.9(1)% (for t<sub>g</sub> = 100 μs), representing respectively the fastest and lowest-error two-qubit gates reported between trapped-ion qubits by nearly an order of magnitude in each case. We also characterise single-qubit gates with average errors below 10<sup>-4</sup> per operation, over an order of magnitude better than previously achieved with laser-driven operations. Additionally, we present work on a mixed-species entangling gate. We entangle of a single <sup>40</sup>Ca<sup>+</sup> ion and a single <sup>43</sup>Ca<sup>+</sup> ion with a fidelity of 99.8(5)%, and perform full tomography of the resulting entangled state. We describe how this mixed-species gate mechanism could be used to entangle <sup>43</sup>Ca<sup>+</sup> and <sup>88</sup>Sr<sup>+</sup>, a promising combination of ions for future experiments.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:711720 |
Date | January 2014 |
Creators | Ballance, Christopher J. |
Contributors | Lucas, David |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://ora.ox.ac.uk/objects/uuid:1beb7f67-4d92-4d57-8754-50f92f9d27f4 |
Page generated in 0.0022 seconds