Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-06-05T14:54:01Z
No. of bitstreams: 1
2010 - Samuel_Ribeiro_Passos.pdf: 16768295 bytes, checksum: 38c2614ad26085e9a101652551af84b5 (MD5) / Made available in DSpace on 2017-06-05T14:54:01Z (GMT). No. of bitstreams: 1
2010 - Samuel_Ribeiro_Passos.pdf: 16768295 bytes, checksum: 38c2614ad26085e9a101652551af84b5 (MD5)
Previous issue date: 2010-02-23 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior, CAPES, Brasil. / The increasing demand for biological processes alternative, environmentally friendly and
efficient in converting lignocellulosic material, expanding their application potential for
agribusiness, motivates researches worldwide. Thus, organisms isolated in nature, in specific
ecosystems, become increasingly important because of their physiological and metabolic
diversity, which gives them a great potential in the development of biotechnological processes
of interest to society. The aim of this study was to assess the microbial community associated
with the intestinal tract of millipede Trigoniulus corallinus and bioprospecting for
microorganisms with cellulolytic capacity. The millipedes were collected and incubated with
litter in diets of grass (Paspalum notatum) and ?sabia? (Mimosa caesalpinifolia). Sampling
occurred at 15, 30, 45, and 75 days of incubation. The intestinal tract of five individuals was
removed, sectioned the posterior third, processed and stored in ultrasound. DNA from
microbes associated with the intestinal tract, litter and coprolite was extracted, and DGGE
analysis using 16S rDNA, DGGE group actinomycetes, and it was evaluated the presence of
nifH genes. The 16s gene analysis by DGGE revealed a microbial diversity conditioned by the
diet offered to 45 days. After this period, this effect was no longer visible. The community
associated with coprolites and the type of litter was distributed in separate clusters of samples
from the intestinal tract. This effect was not observed in the community assessment of
actinomycetes, where the big difference for division of groups was the diet. The animals fed
on grass litter showed a diverse community, and they were not influenced by time or
compartmentalization. The samples associated with litter and coprolites were 80% similar to
samples from the intestinal tract. In millipedes fed with material form Mimosa caesalpinifolia,
the result was different, the samples of litter and coprolites where 50% similar to the intestinal
tract. All samples had nifH genes detected by polymerase chain reaction. Samples collected at
45 days were also inoculated in mineral minimum medium of Busnell-Hass added carboxymethyl-cellulose (CMC) as sole carbon source. Colonies were evaluated for their ability to
breakdown cellulose enzyme and 15 had an index greater than 1. The isolate that showed the
highest rate (3.65) was subjected to further analysis. The microscope observation suggested
that this was not an isolated but a complex of microorganisms acting on the degradation of
cellulose. There is evidence of BNF in the intestinal tract of the millipede and microorganisms
proliferated in CMC through the proper amplification of nifH genes and proliferation in
medium within nitrogen. The community of prokaryotes was influenced by the diet offered to
the community up to 45 days, and the actinomycetes community was conditioned by the diet.
It was possible to isolate microorganisms and complexes of microorganisms with cellulolytic
capacity, with great potential in the search for environmentally friendly technologies in
generating agrobioenergy. / A crescente demanda por processos biol?gicos alternativos, ambientalmente favor?veis e
eficientes na transforma??o de material ligninocelul?sico, ampliando seu potencial de
aplica??o agroindustrial, estimula pesquisas em todo o mundo. Assim, microrganismos
isolados na natureza, em ecossistemas espec?ficos, tornam-se cada vez mais importantes pela
sua diversidade metab?lica e fisiol?gica, que lhes confere grande potencialidade no
desenvolvimento de processos biotecnol?gicos de interesse ? sociedade. O objetivo deste
trabalho foi avaliar a comunidade microbiana associada ao trato intestinal do dipl?pode
Trigoniulus corallinus e a bioprospec??o de microrganismos com capacidade celulol?tica. Os
dipl?podes foram coletados e incubados em dietas com serrapilheira de grama batatais
(Paspalum notatum) e sabi? (Mimosa caesalpinifolia). As amostragens aconteceram aos 15,
30, 45 e 75 dias de incuba??o. O trato intestinal de cinco indiv?duos foi removido e
seccionado o ter?o posterior tratado em ultrasom e estocado. Procedeu-se a extra??o de DNA
da microbiota associada ao trato intestinal, serrapilheira e copr?lito, com an?lise por DGGE
utilizando o gene 16S rDNA, DGGE para grupo actinomicetos e avalia??o da presen?a de
genes nifH. A an?lise do gene 16s por DGGE revelou diversidade microbiana condicionada
pela dieta oferecida at? os 45 dias. Ap?s este per?odo o efeito n?o foi mais vis?vel. A
comunidade associada aos copr?litos e ao tipo de serrapilheira distribui-se em grupamentos
separados das amostras oriundas do trato intestinal. O mesmo n?o foi observado na avalia??o
da comunidade de actinomicetos, onde o grande diferencial para divis?o de grupos foi a dieta.
Os animais alimentados com serrapilheira de grama mostraram uma comunidade diversa e
n?o influenciada pelo tempo ou compartimentaliza??o. As amostras associadas ? serrapilheira
e aos copr?litos foram 80% similares ?s do trato intestinal. Nos dipl?podes alimentados com
sabi?, o resultado foi diferente, sendo as amostras de serrapilheira e copr?litos 50% similares
?s do trato intestinal. Todas as amostragens tiveram genes nifH detectados via PCR. Amostras
coletadas aos 45 dias foram tamb?m inoculadas em meio mineral m?nimo de Busnell-Hass
adicionado de carboxi-metil-celulose (CMC) como ?nica fonte de carbono. Os microrganismos isolados foram avaliados quanto ? capacidade de degrada??o de celulose e 15
apresentaram ?ndice enzim?tico maior que 1. O isolado com o maior ?ndice (3,65) foi alvo de
outras an?lises. A visualiza??o em microsc?pio sugeriu que n?o se tratava de um isolado e
sim de um complexo de microrganismos atuando na degrada??o da celulose. H? evidencias de
FBN no trato intestinal do dipl?pode e microrganismos proliferados em meio CMC pela boa
amplifica??o de genes nifH e prolifera??o em meio com aus?ncia de nitrog?nio. A
comunidade de procariotos foi influenciada pela dieta oferecida at? os 45 dias e a comunidade
de actinomicetos foi condicionada em fun??o da dieta. Foram isolados microrganismos e
complexos de microrganismos com capacidade celulol?tica, com grande potencial para a
busca de tecnologias ambientalmente sustent?veis na gera??o de agrobioenergia.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/1735 |
Date | 23 February 2010 |
Creators | Passos, Samuel Ribeiro |
Contributors | Xavier, Gustavo Ribeiro, Correia, Maria Elizabeth Fernandes, Anjos, Lucia Helena Cunha dos, Soares, Lu?s Henrique de Barros |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Agronomia e Ci?ncia do Solo, UFRRJ, Brasil, Instituto de Agronomia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | ABE, T.; HIGASHI, M. Cellulose centered perspective on terrestrial community structure. Oikos, v. 60, p. 127-133, 1991 BALDANI, V.L.D. Efeito da inocula??o de Herbaspirillum spp. No processo de infec??o e coloniza??o de plantas de arroz e ocorr?ncia e caracteriza??o parcial de uma nova bact?ria diazotr?fica.1996, 238f, Tese. (Doutorado em Agronomia ? Ci?ncia do Solo) Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ. BARNES, R. D. Zoologia dos invertebrados. S?o Paulo: Roca, 1179 p, 1984. BREZNAK, J.A., BRUNE, A. Role of microorganisms in the digestion of celluloses by termites. Annual Review of Entomology, v. 39, p.453?487, 1994. BRUNE, A. & FRIEDRICH, M. Microecology of the termite gut: structure and function on a microscale. Current Opinion in Microbiology, v.3, p. 263?269, 2000. BRUNE, A. & STINGL, U. Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: (OVERMANN, J., ed.) Molecular Basis of Symbiosis, Springer, p. 39?60, 2005. BUDZIAK, C. R.; MAIA, C.; MANGRICH, A. S Chemical transformations of organic matter during the composting of wood industry wastes (residues). Quimica Nova , v. 27, p. 399-403, 2004. BYZOV, B. A.; KURAKOV, A. V.; TRETYAKOVA, E. B.; THANH, V. N.; LUU, N. D. T.; RABINOVICH, Y. M. Principles of the digestion of microorganisms in the gut of soil millipedes: specificity and possible mechanisms. Applied Soil Ecology v. 9, p. 145-151, 1998. BYZOV, B. A.; THANH, V. N.; BABJEVA, I. P. Interrelationships between yeasts and soil diplopods. Soil Biology & Biochemistry, v. 25, p. 1119-1126, 1993. BYZOV, B. A.; CLAUS, H.; TRETYAKOVA, E. B.; ZVYAGINTSEV, D. G.; FILIP, Z. Effects of soil invertebrates on the survival of some genetically engineered bacteria in leaf litter and soil. Biology and Fertility of Soils, v.23, p.221-228, 1996. CARLTON, J.M.; HIRT, R.P.; SILVA, J.C.; DELCHER, A.L.; SCHATZ, M.; ZHAO, Q.; WORTMAN, J.R.; BIDWELL, S.L.; ALSMARK, U.C.; BESTEIRO, S.; SICHERITZ-PONTEN, T.; NOEL, C.J.; DACKS, J.B.; FOSTER, P.G.; SIMILLION, C.; VAN DE PEER Y.; .; MIRANDASAAVEDRA D.; BARTON GJ.; WESTROP GD.; M?LLER S.; DESSI D.; FIORI PL.; REN Q.; PAULSEN I.; ZHANG H.; BASTIDA-CORCUERA FD.; SIMOES-BARBOSA A.; BROWN MT.; HAYES RD.; MUKHERJEE M.; OKUMURA CY.; SCHNEIDER R.; SMITH AJ.; VANACOVA S.; VILLALVAZO M.; HAAS BJ.; PERTEA M.; FELDBLYUM TV.; UTTERBACK TR.; SHU CL.; OSOEGAWA K.; DE JONG PJ.; HRDY I.; HORVATHOVA L.; ZUBACOVA Z.; DOLEZAL P.; MALIK SB.; LOGSDON JM JR.; HENZE K.; GUPTA A.; WANG CC.; DUNNE RL.; UPCROFT JA.; UPCROFT P.; WHITE O.; SALZBERG SL.; TANG P.; CHIU CH.; LEE YS.; EMBLEY TM.; COOMBS GH.; MOTTRAM JC.; TACHEZY J.; FRASER-LIGGETT CM.; JOHNSON PJ..Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, v.315, p.207?212, 2007. CARLE-URIOSTE, J. C., J. ESCOBAR-VERA, S. EL-GOGARY, F. HENRIQUE-SILVA, E. TORIGOI, O. CRIVELLARO, A. HERRERA-ESTRELLA, AND H. EL-DORRY. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. The Journal of Biological Chemistry, v. 272, p.10169?10174, 1997.39 CAZEMIER, A. E.; HACKSTEIN, J. H. P.; DENCAMP, H.; ROSENBERG, J.; VANDERDRIFT, C. Bacteria in the intestinal tract of different species of arthropods. Microbial Ecology, v.33, p.189-197, 1997. CHU, T. L., SZABO, I. M., SZABO, I. Nocardioform gut actinomycetes of Glomeris hexasticha Brandt (Diplopoda). Biology and Fertility of Soils, v. 3, p. 113-116, 1987. CORREIA, M. E. F. Distribui??o, prefer?ncia alimentar e transforma??o de serrapilheira por dipl?podes em sistemas florestais. 2003. Tese (Doutorado em Agronomia ? Ci?ncia do Solo) ? Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ. CORREIA, M. E. F., AQUINO, A. M. de. Os Dipl?podes e suas associa??es com microrganismos na ciclagem de nutrientes. Documentos, Embrapa Agrobiologia, v.199, 41p, 2005. CORREIA, M. E. F., PASSOS, S. R., SOARES, L. H. B., ARAUJO, J. L. S., MARTINS, C.M.M., XAVIER, G. R., RUMJANEK N.G. Ecologia da intera??o entre fauna de solo e microrganismos no processo de decomposi??o de res?duos vegetais. XXXII Congresso Brasileiro de Ci?ncia do Solo, Fortaleza, 2009. DAMMAN,C.J., SURAWICZ, C.M. The Gut Microbiota: A Microbial arsenal protecting us from infectious and radiation-induced diarrhea. Gastroenterology, v.136, p. 722-724, 2009. EADY, R.R.; ROBSON, R.L.; SMITH, B.E. Alternative and convencional nitrogenase. In: COLE, J.A.; FERGUSON, S., The nitrogen and sulfur cycles. Cambridge: Cambridge University, p.363-382, 1988. EDENBORN, S. L.; SEXSTONE, A. J. DGGE fingerprinting of culturable soil bacterial communities complements culture-independent analyses. Soil Biology and Biochemistry, v. 39, p. 1570?1579, 2007 GRAY, K.A.; ZHAO, L.; EMPTAGE, M. Bioethanol. Current Opinion Chemical Biology, v. 10, p.1?6, 2006. GUERRA, J.G.M., SANTOS, G.A. M?todos qu?micos e f?sicos. In: SANTOS, G.A.; SILVA, L.S.; CANELLAS, L.P.; CAMARGO, F.A.O. Eds. Fundamentos da Mat?ria Org?nica do Solo: Ecossistemas Tropicais e Subtropicais. Porto Alegre, Metr?pole, 2008, p 185-198. HAHN-H?GERDALA, B.; GALBEA, M.; GORWA-GRAUSLUNDA, M.F.; LID?NA, G.; ZACCHI, G. Bio-ethanol ? the fuel of tomorrow from the residues of today. TRENDS in Biotechnology, v. 24, p. 549-556, 2006. HANKIN, L.; ANAGNOSTAKIS, S.L. The use of solid media for detection of enzymes production by fungi. Mycologia, v. 67, p. 597-607, 1975. HIMMEL, M. E.; DING, S.Y.; JOHNSON, D.K.; ADNEY, W.S.; NIMLOS, M.R.; BRADY, J.E.; FOUST,T.D. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, v.315, p.804?7, 2007. HUGENHOLTZ, P.; GOEBEL B. M.; PACE, N. R. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. The Journal of Bacteriology, v.180, p. 4765?4774, 1998. HONGOH, Y.; SHARMA, V. K.; PRAKASH, T.; NODA, S.; TOH, H.; TAYLOR, T.D.; KUDO, T.; SAKAKI, Y.; TOYODA, A.; HATTORI, M.; OHKUMA, M. Genome of an endosymbiont coupling N-2 fixation to cellulolysis within protist cells in termite gut. Science, v.322, p.1108-1109, 2008.40 HUNGATE R.E. Studies on cellulose fermentation II. An anaerobic cellulose-decomposing actinomycete, Micromonospora propionici, N. Sp. Journal Bacteriology. v. 51, p.51?56, 1946. JANSSEN, P.H., YATES, P.S., GRINTON, B.E., TAYLOR, P.M., SAIT, M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology 68, p.2391?2396, 2002. KENNEDY, A. C. Bacterial diversity in agroecosystems. Agriculture, Ecosystems and Environment, v. 74, p. 65-76, 1999. KNAPP, B. A.; PODMIRSEG, S. M.; SEEBER, J.; MEYER, E.; INSAM, H Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biology & Biochemistry, v. 41, p. 2299-2307, 2009(a) KNAPP, B. A.; SEEBER, J.; PODMIRSEG, S.M.; RIEF, A.; MEYER, E.; INSAM, H. Molecular fingerprinting analysis of the gut microbiota of Cylindroiulus fulviceps (Diplopoda). Pedobiologia, v. 52, p. 325-336, 2009(b) KUKOLYA, J.; NAGY, I.; LADAY, M.; TOTH, E.; ORAVECZ, O.; MARIALIGETI, K.; HORNOK, L. Thermobifida cellulolytica sp nov., a novel lignocellulose-decomposing actinomycete. International Journal of Systematic and Evolutionary Microbiology. V.52, p.1193-1199, 2002. K?HLER, H. R.; ALBERTI, G. Morphology of the mandibles in the millipedes (Diplopoda, Arthropoda). Zoologica Scripta, v. 19, p.195-202, 1990. K?HLER, H. R.; ALBERTI, G.; STORCH, V. The influence of mandibles of Diplopoda on the food ? a dependence of fine structure and assimilation efficiency. Pedobiologia, v. 35, p. 108-116, 1991. LAVELLE P., BIGNELL D., LEPAGE M., WOLTERS V., ROGER P., INESON P., HEAL O.W. AND DHILLION S. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, v.33, p.159?193, 1997. LEAL, M.A.A. Produ??o e efici?ncia agron?mica de compostos obtidos com palhada de gram?nea e leguminosa para o cultivo de hortali?as org?nicas. 2006. 133p. Tese (Doutorado) ? Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ. LEFEBVRE, T.; MIAMBI, E.; PANDO, A.; DIOUF, M.; ROULAND-LEFEVRE, C. Gutspecific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insectes Sociaux, v. 56, p. 269-276, 2009. LILBURN, T. G.; KIM, K. S.; OSTROM, N. E.; BYZEK, K. R.; LEADBETTER, J. R.; BREZNAK J. A. Nitrogen fixation by symbiotic and free-living spirochetes. Science, v. 292, p. 2495-2498, 2001 LYND, L.R.; WEIMER, P.J.; VAN ZYL, W.H.; PRETORIUS, I.S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, v. 66, p. 506?577, 2002. MARTIN, A.; MARINISSEN, J. C. Y. Biological and chemical processes in excrements of soil animals. Geoderma, v. 56, p. 331-347, 1993.41 MATSUI, H.; KATO, Y.; CHIKARAISHI, T.; MORITANI, M.; BAN-TOKUDA, T.; WAKITA, M. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library. Anaerobe, 2009 (doi:10.1016/j.anaerobe.2009.07.005, on-line) MCBRAYER, J.F. Exploitation of deciduous leaf litter by Apheloria ax oce Diplopoda: Eurydesmida). Pedobiologia, v. 13, p. 90-98, 1973. MEN?KO, E. V., CHERNOV, I. YU., BYZOV B. A. Interrelationships between yeast fungi and collembolans in soil. Microbiology, Vol. 75, No. 6, p. 708?715, 2006. MICHELLAND, R. J.; MONTEILS, V.; ZENED, A.; COMBES, S.; CAUQUIL, L.; GIDENNE, T.; HAMELIN, J.; FORTUN-LAMOTHE, L. Spatial and temporal variations of the bacterial community in the bovine digestive tract. Journal of Applied Microbiology, v. 107, p. 1642-1650, 2009. MIELNICZUK, J. Mat?ria org?nica e a sustentabilidade de sistemas agr?colas: In: SANTOS, G.A.; SILVA, L.S.; CANELAS, L.P.; CAMARGO, F.A.O. (eds) Fundamentos da Mat?ria Org?nica do Solo: Ecossistemas tropicais e Subtropicais. Porto Alegre, Metr?pole, 2008, p 1- 5. MILLING, A.; SMALLA, K.; MAIDL, F.X.; SCHLOTER, M.; MUNCH, J.C.; Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant and Soil, v.266, p.23-39, 2004. MUYZER, G.; DE WAAL, E.C.; UITTERLINDEN, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Applied and Environmental Microbiology, v.59, p.695?700, 1993. O?BRIEN, R. W.; SLAYTOR, M. Role of microorganisms in the metabolism of termites. Australian Journal Biology Science, v. 35, p.239?262,1982. ?VRE?S, L.; TORSVIK, V. Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, v. 36, p.303?315, 1998. PASSOS, S. R.; REIS JUNIOR, F. B.; RUMJANEK, N. G.; MENDES, I.C.; BAPTISTA, M.J.; XAVIER, G.R., Atividade enzim?tica e perfil da comunidade bacteriana em solo submetido ? solariza??o e biofumiga??o. Pesquisa Agropecu?ria Brasileira, v.43, p.879-885, 2008. POLY, F.; MONROZIER, L.J.; BALLY, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Resource Microbiology, v.152, p.95?103, 2001 PALLERONI, N. J. Introduction to the family Pseudomonadaceae. In: STARR, M. P.; Stolp, H.; TR?PER, H.G.; BALOWS, A.; SCHLEGEL, H. G. (ed.), The prokaryotes: a handbook on habitats, isolation, and identification of bacteria, vol. I. Springer-Verlag, New York, N.Y. 1981, p 655-665. RAMACHANDRA, M.; CRAWFORD, D.; HERTEL, G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied Environmental.Microbiology, v.5, p.3057-306, 1988. RAOULT, D. Probiotics and obesity: a link? Nature Reviews Microbiology, v. 7, p. 616-616, 2009.42 RUEGGER, M.J.S; TAUK-TORNISIELO, S.M. Atividade da celulase de fungos isolados do solo da Esta??o Ecol?gica de Jur?ia-Itatins, S?o Paulo, Brasil. Revista Brasileira de Bot?nica, v.27, n.2, p.205-211, 2004. SALEH-RASTIN, N.; PETERSEN, M.; COLEMAN, S.; HUBBELL, D. Rapid plate assay for hydrolytic enzymes of Rhizobium. In: KEISTER, D.; CREGON, P.B. (eds). The Rhizosphere and Plant Growth, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991, p 188. SCHWIEGER, F.; TEBBE, C.C. A new approach to utilize PCR?single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, v.64, p. 4870?4876, 1998. SEKIROV, I.; TAM, N.M.; JOGOVA, M. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infection and Immunity, v.76, p.4726? 4736, 2008. SU, Y.; YAO, W.; PEREZ-GUTIERREZ, O. N.; SMIDT, H.; ZHU, W.Y. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe, v. 14, p. 78-86, 2008. SWIFT, M. J.; HEAL, O. W.; ANDERSON, J. M. Decomposition in terrestrial ecosystems. Oxford: Blackwell, v. 5. 372 p. 1979. STRIGANOVA, B. R. Changes in structure and biodiversity of soil fauna on forest-steppe catena in central Russia. Izvestiya Akademii Nauk Seriya Biologicheskaya, v.2, p.191-208, 1995. TEIXEIRA, K.R. dos S. Bases moleculares e gen?tica da fixa??o de nitrog?nio. Serop?dica: Embrapa-CNPAB, 1997. 26p. (Embrapa-CNPAB. Documentos, 32). THEENHAUS, A. E S. SCHEU. Successional changes in microbial biomass, activity and nutrient status in faecal material of the slug Arion rufus (gastropoda) deposited after feeding on different plant materials. Soil Biology & Biochemistry, v.28, n.4-5, p.569-577. 1996. THOMPSON, F.L.; OLIVEIRA, V.M.; AZEVEDO, J.L.; ARA?JO,W.L.; IN?CIO, C.A.; SELEGHIM, M.H.R.; KITAJIMA, E.W. Taxonomia: microbiana, de procariontes, de fungos, de protozo?rios e de v?rus: CGEE, 2005. 53p. TOKUDA, G.; WATANABE, H. Hidden cellulases in termites: revision of an old hypothesis. Biology Letters, v.3, p.336-339. 2007. TOUTAIN, F. Les liti?res: si?ge de syst?mes interactifs et moteur de ce interac-tions. Revue du ?cologie et Biologie du Sol, Paris, v.24, p.231-242, 1987 VON WINTZINGERODE F., GO?BEL U.B. AND STACKEBRANDT E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, v.21, p.213?219, 1997. WARD, D.M.; BATESON, M.M.; WELLER, R.; RUFFROBERTS, A.L. Ribosomal-RNA analysis of microorganisms as they occur in nature. Advances in Microbial Ecology, v.12, p.219-286, 1992. WARNECKE, F.; LUGINBUHL, P.; IVANOVA, N.; GHASSEMIAN, M.; RICHARDSON, T. H.; STEGE, J. T.; CAYOUETTE, M.; MCHARDY, A. C.; DJORDJEVIC, G.; ABOUSHADI, N.; SOREK, R.; TRINGE, S. G.; PODAR, M.; MARTIN, H.G.; KUNIN, V.; DALEVI, D.; MADEJSKA, J.; KIRTON, E.; PLATT, D.; SZETO, E.; SALAMOV, A.; BARRY, K.; MIKHAILOVA, N.; KYRPIDES, N. C.; MATSON, ERIC G.OTTESEN, E. A.; ZHANG, X.; HERNANDEZ, M.; MURILLO, C.; ACOSTA, L. G.; RIGOUTSOS, I.;43 TAMAYO, G.; GREEN, B. D.; CHANG, C.; RUBIN, E. M.; MATHUR, E. J.; ROBERTSON, D. E.; HUGENHOLTZ, P.; LEADBETTER, J. R.; Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, v.450, p.560-U17. 2007 WILKIE, K.C.B. Hemicellulose. Chemtech, v. 13, p. 306-319, 1983. XAVIER, G. R.; SILVA, F. V.; ZILLI, J. E.; RUMJANEK, N. G. Adapta??o de m?todo para extra??o de DNA de Microrganismos Associados a Ra?zes de Plantas. Serop?dica: Embrapa Agrobiologia, 2004. 24 p. (Embrapa Agrobiologia. Documentos, 171). XU, F. Enhancing biomass conversion to fermentable sugars: a progress report of a joint government-industrial project. In: OHMIYA, K.; SAKKA, K.; KARITA, S.; KIMURA, T.; SAKKA, M.; ONISHI, Y. editors. Biotechnology of ligninocellulose degradation and biomass utilization. Tokyo: Uni Publishers, 2004. p. 793?804. ZANI, S.; MELLON, M.T.; COLLIER, J.L.; ZEHR, J.P. Expression of nifH genes in natural microbial assemblages in Lake George, New York detected with RT-PCR. Applied and Environmental Microbiology, v.66, p.3119?3124, 2000. ZILLI, J. ?.; BOTELHO, G. R.; NEVES, M. C. P.; RUMJANEK, N. G. Efeito de glyphosate e imazaquin na comunidade bacteriana do rizoplano de soja (Glycine max (L.) Merrill) e em caracter?sticas microbiol?gicas do solo. Revista Brasileira de Ci?ncia do Solo, v.32, p. 633- 642, 2008. ZILLI, J.E.; SANTOS, E.L; HAGLER, L.M.; NEVES, M.C.P.; RUMJANEK, N.G. Desenvolvimento de meio de cultivo para microrganismos do solo utilizando solo como fonte de nutrientes. In: CONGRESSO BRASILEIRO DE MICROBIOLOGIA, 22, 2003, Florian?polis. Resumos. Florian?polis, SC: Sociedade Brasileira de Microbiologia, 2003. |
Page generated in 0.0031 seconds