Posttraumatic epilepsy is a common consequence of brain trauma. However, little is known about how long-term changes in local excitatory and inhibitory synaptic networks contribute to epilepsy after closed-head brain injury. This study adapted a widely used model of experimental brain injury as a mouse model of posttraumatic epilepsy. Behavioral seizure activity and alterations in synaptic circuitry in the dentate gyrus were examined in mice after experimental cortical contusion brain injury. Spontaneous behavioral seizures were observed in 20% of mice after moderate injury and 36-40% of mice weeks after severe injury. In the dentate gyrus, most mice displayed regionally localized mossy fiber reorganization ipsilateral to the injury that was absent in control mice or sections contralateral to the injury. Extracellular field and whole-cell patch clamp recordings were performed in acute brain slice preparations of the dentate gyrus. Dentate granule cells displayed spontaneous and evoked activity that was consistent with network synchronization and the formation of recurrent excitatory network only in slices that had posttraumatic mossy fiber sprouting. The excitability of surviving hilar GABAergic interneurons, which provide important feedback inhibition to granule cells, was examined at similar time points. Cell-attached and whole-cell voltage-clamp recordings revealed increased spontaneous and glutamate photostimulation-evoked excitatory input to hilar GABA neurons ipsilateral to the injury, versus control and contralateral slices. Despite increased excitatory synaptic input to interneurons, whole-cell voltage-clamp recordings revealed a reduction in inhibitory synaptic input to granule cells. These findings suggest that there are alterations in excitatory and inhibitory circuits in mice with posttraumatic mossy fiber sprouting and seizures after cortical contusion head injury.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1102 |
Date | 01 January 2010 |
Creators | Hunt, Robert F., III |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0023 seconds