Return to search

On choice models in the context of MDPs

Cette thèse se penche sur les modèles de choix, des distributions sur des ensembles d'alternatives. Les modèles de choix sur les processus décisionnels de Markov (MDP) peuvent décomposer de très grands espaces alternatifs en procédures étape par étape conçues pour non seulement combattre la malédiction de la dimensionnalité mais aussi pour mieux refléter la dynamique sous-jacente.

La première partie est consacrée à l'estimation du temps de trajet dans le cadre de la modélisation du choix de chemin. Les modèles de choix de chemin sont des modèles de choix sur l'ensemble des chemins utilisés pour modéliser le flux de circulation. Intuitivement, le temps de trajet est l'une des caractéristiques les plus importantes lors du choix des chemins, mais les temps de trajet ne sont pas toujours connus. En revanche, le cadre classique suppose que ces deux étapes sont séquentielles, car les temps de trajet des arcs font partie de l'entrée du processus d'estimation du choix de chemin. Pourtant, les interdépendances complexes signifient que ce modèle de choix de chemin peut complémenter toute observation lors de l'estimation des temps de trajet. Nous construisons un modèle statistique pour l'estimation du temps de trajet et proposons de marginaliser les caractéristiques non observées. En utilisant ces idées, nous montrons que nous sommes capables d'apprendre des modèles de choix de chemin sans observer de chemins réels et à différentes granularités.

La deuxième partie se concentre sur les échecs des MDP régularisés et comment la régularisation peut avoir des effets secondaires inattendus, tels que la divergence dans les chemins stochastiques les plus courts ou des fonctions de valeur déraisonnablement grandes. Les MDP régularisés ne sont rien d'autre qu'une application des modèles de choix aux MDP. Ils sont utilisés dans l'apprentissage par renforcement (RL) pour obtenir, entre autres choses, un modèle de choix sur les trajectoires possibles pour l'apprentissage par renforcement inverse, transférer des connaissances préalables au modèle, ou obtenir des politiques qui exploitent tous les objectifs dans l'environnement. Ces effets secondaires sont exacerbés dans les espaces d'action dépendants de l'état. Comme mesure d'atténuation, nous introduisons deux transformations potentielles, et nous évaluons leur performance sur un problème de conception de médicaments. / This thesis delves on choice models, distributions on sets of alternatives. Choice models on Markov decision processes (MDPs) can break down very large alternative spaces into step-by-step procedures designed to not only tackle the curse of dimensionality but also to reflect the underlying dynamics better.

The first part is devoted to travel time estimation as part of path choice modeling. Path choice models are choice models on the set of paths used to model traffic flow. Intuitively, travel time is one of the more important features when choosing paths, yet travel times are not always known. In contrast, the classical setting assumes that these two steps are sequential, as arc travel times are part of the input of the path choice estimation process. Yet the intricate interdependences mean that that path choice model can complement any observation when estimating travel times. We build a statistical model for travel time estimation and propose marginalizing the unobserved features. Using these ideas, we show that we are able to learn path choice models without observing actual paths and at different granularity.

The second part focuses on the failings of regularized MDPs and how regularization may have unexpected side effects, such as divergence in stochastic shortest paths or unreasonably large value functions. Regularized MDPs are nothing but an application of choice models to MDPs. They are used in reinforcement learning (RL) to get, among other things, a choice model on possible trajectories for inverse reinforcement learning, transfer prior knowledge to the model, or to get policies that exploit all goals in the environment. These side effects are exacerbated in state-dependent action spaces. As a mitigation, we introduce two potential transformations, and we benchmark their performance on a drug design problem.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32513
Date10 1900
CreatorsMohammadpour, Sobhan
ContributorsFrejinger, Emma, Bacon, Pierre-Luc
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0035 seconds