Return to search

Traveling Wave Solutions of Integro-differential Equations of One-dimensional Neuronal Networks

Traveling wave solutions of integro-differential equations for modeling one-dimensional neuronal networks, are studied. Under moderate continuity assumptions, necessary and sufficient conditions for the existence and uniqueness of monotone increasing (decreasing) traveling wave solutions are established. Some faults in previous studies are corrected.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/24244
Date14 June 2013
CreatorsHao, Han
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0017 seconds