The effect of power ultrasound on algae blooms (Microcystis aeruginosa) over a 30 minute period was assessed using 200 and 400 mL suspensions of optical density of 2.0 at 680 nm. The frequencies employed were 20, 40, 580 (40%, 80%, and maximum intensity), 864 (40%, 80% and maximum intensity) and 1146 kHz (40%, 80% and maximum intensity). Ultrasound can induce two different effects on algal cells; inactivation at high power (≥ 0.0022 Wcm-3) and de-agglomeration at low power (≤ 0.0042 Wcm-3). Ultrasonic effects were observed using haemocytometer, optical density, UV-visible spectrometer, fluorospectrometer and flow cytometry. Using a 40 kHz bath (0.0214 Wcm-3) led to de-agglomeration resulting in an overall increase in algae of -0.28% by haemocytometer and -4.20% by optical density. The highest inactivation achieved was 91.54% (haemocytometer) and 44.63% (optical density) using 1146 kHz (maximum intensity, 0.0248 Wcm-3) and 200 mL suspension. In terms of efficiency to achieve inactivation (i.e. inactivation % / power) the best result was observed at 864 kHz (40% power setting, 0.0042 Wcm-3) with 200 mL suspension giving 8226.19 by haemocytometer and 5011.90 by optical density. This initial part of the study allowed a comparison to be made of the ultrasonic parameters that would lead to optimum algae removal in terms of acoustic energy input. The haemocytometer results for cells number were generally higher than those indicated by optical density which is probably due to the fact that the former records only cell numbers remaining whereas the latter is an overall measure of algae concentration (ruptured cells will still register, because their contents remain in suspension). Studies on de-agglomeration and inactivation were also undertaken using small or medium-scale ultrasonic equipment that were models for industrial scale systems. The following volumes of algae suspension and equipment were employed: Sonolator (Sonic Corporation, 5L flow), 16 kHz and 20 kHz Dual Frequency Reactor (DFR, Advanced Sonics LLC, 1L static and 3.5 L flow), 20 kHz Vibrating Tray (Advanced Sonics LLC, 1.5L static) and 20 kHz ultrasonic probe (made at Southeast University, 4L static). The most effective inactivation effects were obtained with the DFR reactor in static mode and 60% power setting for 10 minutes which achieved reductions calculated at 79.25% using haemocytometry and 60.44% by optical density. The third part of this study was to gain a greater understanding of the basic mechanisms of the action of ultrasound on algae and to interpret this in terms of its potential for algal cell removal and control. Algal cell activity was assessed by three methods: using a UV-visible spectrometer (Shimazu, 2450PC), a fluorometer (Shimazu, RF5301) and a flow cytometer (BD FACS Calibur). Ultrasonic damage to Chlorophyll A was revealed through observation of the loss in UV-Vis spectrophotometer peaks around 600 nm together with the decrease in fluorometer results for peaks around 500 and 680 nm. Flow cytometer results were able to identify the number of both intact cells and damaged/ruptured cells thus giving greater insight into the mechanism of ultrasonic inactivation. The direct rupture of cells by power ultrasound was prevalent at low frequencies ≤ 40 kHz due to the mechanical effects of cavitation collapse and inactivation of algal cells by free radicals occurred at high frequencies ≥ 100 kHz and medium powers where mechanical effects are much reduced. In conclusion, this work has shown that power ultrasound can provide a suitable method to control algal growth in small and medium laboratory scales. Scale-up beyond this point is the subject of further research but the results herein clearly demonstrate the importance of choosing the correct ultrasonic parameters in terms of frequency, power and exposure time.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:628895 |
Date | January 2010 |
Creators | Wu, X. |
Publisher | Coventry University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://curve.coventry.ac.uk/open/items/d0d31d7e-fe64-436a-88b3-24c2b4656eba/1 |
Page generated in 0.0019 seconds