Return to search

Magnetism, Reactivity and Metal Ion Lability in Trigonal Iron Clusters

Important reactions are catalyzed by enzymes employing polynuclear cofactors, often characterized by weak-field ligands and transition metal ions within the sum of the van der Waals radii. While the overall stoichiometries and, in many cases, the structures, of the cofactors are known, the roles of the individual metal ions remain uncertain. Our approach is to investigate model clusters stabilized by a hexadentate, trinucleating ligand. The hexaamine ligand \((MeC (CH_2NHC_6H_4-o-NHPh)_3) (^{Ph}LH_6)\) allows facile synthesis of the clusters \((^{Ph}L)Fe_3(thf)_3\), \((^{Ph}L)Fe_3 (py)_3\), and \((^{Ph}L)Fe_3(PMe_2Ph)_3\) (thf = tetrahydrofuran, py = pyridine). The phenyl substituents on the ligand sterically prevent strong M–M bonding, but permit weaker M–M orbital interactions, with Fe–Fe distances near those found in Fe metal. The complex \((^{Ph}L)Fe_3(thf)_3\) exhibits a well-isolated S = 5 or S = 6 ground state over 5 - 300 K, as evidenced by magnetic susceptibility and reduced magnetization data. However, in the stronger-field pyridine and phosphine complexes, temperature dependent susceptibility is observed which is best modeled as a spin state transition from S = 2 to S = 4. Variable-temperature crystallography and Mössbauer spectroscopy reveal a whole-molecule, rather than site-isolated, spin transition. The all-ferrous cluster \((^{Ph}L)Fe_3(thf)_3\) can be oxidized with triphenylmethyl halides or iodine to give singly-oxidized clusters of the form \((^{Ph}L)Fe_3X(L)\) and \([(^{Ph}L)Fe_3(\mu-X)]_2 (X = Cl, Br, I; L = thf, py)\), in which one Fe–Fe distance contracts to 2.30 Å and the others lengthen to 2.6-2.7 Å. The halide and solvent ligands coordinate a unique Fe, but Mössbauer spectroscopy shows that the diiron pair bears the oxidation. Magnetic data can be modeled by considering a high-spin ferrous ion ferromagnetically coupled to an \(S = 3/2 [Fe_2]^{5+}\) unit. When \([(^{Ph}L)Fe_3(\mu-Cl)]_2\) is reacted with two or five equivalents of \(CoCl_2\) in tetrahydrofuran, the fully-substituted complexes \((^{Ph}L)Fe_2CoCl(acn)\) and \((^{Ph}L)FeCo_2Cl(acn)\) (acn = acetonitrile) can be isolated. \(^1H\) nuclear magnetic resonance shows that they are distinct species, not a mixture, and the elemental ratios are confirmed by X-ray fluorescence spectroscopy. Mössbauer spectroscopy shows that the Co preferentially substitutes into the \([M_2]^{5+}\) unit, as the ferrous site doublet is completely absent in \((^{Ph}L)FeCo_2Cl(acn)\). / Chemistry and Chemical Biology

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/9548613
Date12 September 2012
CreatorsEames, Emily
ContributorsBetley, Theodore A.
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0017 seconds