Return to search

Night, light and flight : Light attraction in Trichoptera

Artificial light is an important and necessary part of our urban environment, but has become a threat to biodiversity. It can have substantial direct and indirect effects on populations of all kinds of organisms. While light attraction in bats and moths has been well studied other organisms such as Trichoptera have been largely neglected, despite Trichoptera being one of the most abundant insect orders in freshwater systems. The light attraction of Trichoptera was studied through seasonal data from three different locations in Sweden. The data was examined through meta- and regression analyses to compare catches in light traps and passive traps. The use of relative abundances excluded bias from the species with large populations, and the difference in individuals caught between passive traps and light traps. The results indicated that artificial light could affect Trichoptera populations. Unlike moths, female Trichoptera were more attracted to light than males and attraction to light varied between species. In both cases, size dimorphism could explain the variation. Day-, evening- and night-active species were all attracted to light, but the latter more so. Research has shown that a false flight activity can occur in day-active Trichoptera when a lamp is lit during night, which could explain the capture of day- and evening-active species in a light trap. In all, artificial light could alter Trichoptera populations, changing sex ratios and species composition. This impact should be considered when erecting light sources near waterways.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-139865
Date January 2017
CreatorsLarsson, Malin
PublisherLinköpings universitet, Institutionen för fysik, kemi och biologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0136 seconds