Return to search

Design and Implementation of Resource-Aware Wireless Networked Control Systems

Networked control over wireless sensor and actuator systems is of growing importancein many application domains. Energy and communication bandwidth are scarce resources in such systems. Despite that feedback control might only be needed occasionally, sensor and actuator communications are often periodic and with high frequency in today’s implementations. In this thesis, resource-constrained wireless networked control systems with an adaptive sampling period are considered. Our first contribution is a system architecture for aperiodic wireless networked control. As the underlying data transmission is performed over a shared wireless network, we identify scheduling policies and medium access controls that allow for an efficient implementation of sensor communication. We experimentally validate three proposed mechanisms and show that best performance is obtained by a hybrid scheme, combining the advantages of event- and self-triggered control as well as the possibilities provided by contention-based and contention-free medium accesscontrol. In the second contribution, we propose an event-triggered PI controller for wireless process control systems. A novel triggering mechanism which decides the transmission instants based on an estimate of the control signal is proposed. It addresses some side-effects that have been discovered in previous PI proposals, which trigger on the state of the process. Through simulations we demonstrate that the new PI controller provides setpoint tracking and disturbance rejection close to a periodic PI controller, while reducing the required network resources. The third contribution proposes a co-design of feedback controllers and wireless medium access. The co-design is formulated as a constrained optimization problem, whereby the objective function is the energy consumption of the network and the constraints are the packet loss probability and delay, which are derived from the performance requirements of the control systems. The design framework is illustrated in a numerical example. / QC 20111004

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-41944
Date January 2011
CreatorsAraujo, Jose
PublisherKTH, Reglerteknik, Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-EE, 1653-5146 ; 2011:065

Page generated in 0.0022 seconds